Files
openmlsys-zh/chapter_explainable_AI/index.md
HaoyangLI 9059309675 fix explainable_ai reference error (#86)
* update explainable ai

* update explainable ai

* fix citation errors (#60)

* fix reference error

* update explainable ai

* update explainable ai

* fix citation errors (#60)

* fix reference error

Co-authored-by: lhy <hlicn@connect.ust.hk>
2022-03-16 10:00:49 +08:00

22 lines
2.1 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 可解释性AI系统
近10年来籍由算力与数据规模的性价比突破临界点以深度神经网络为代表的联结主义模型架构及统计学习范式以后简称深度学习在特征表征能力上取得了跨越级别的突破大大推动了人工智能的发展在很多场景中达到令人难以置信的效果。比如人脸识别准确率达到97%以上谷歌智能语音助手回答正确率在2019年的测试中达到92.9%。在这些典型场景下,深度学习在智能表现上的性能已经超过了普通人类(甚至专家),从而到了撬动技术更替的临界点。在过去几年间,在某些商业逻辑对技术友好,或者伦理法规暂时稀缺的领域,如安防、实时调度、流程优化、竞技博弈、信息流分发等,人工智能和深度学习取得了技术和商业上快速突破。
食髓知味,技术发展的甜头自然每个领域都不愿放过。而当对深度学习的商业化运用来到某些对技术敏感、与人的生存或安全关系紧密的领域,如自动驾驶、金融、医疗和司法等高风险应用场景时,原有的商业逻辑在进行技术更替的过程中就会遇到阻力,从而导致商业化变现速度的减缓甚至失败。究其原因,以上场景的商业逻辑及背后伦理法规的中枢之一是稳定的、可追踪的责任明晰与责任分发;而深度学习得到的模型是个黑盒,我们无法从模型的结构或权重中获取模型行为的任何信息,从而使这些场景下责任追踪和分发的中枢无法复用,导致人工智能在业务应用中遇到技术上和结构上的困难。此外,模型的可解释性问题也引起了国家层面的关注,相关机构对此推出了相关的政策和法规。
因此从商业推广层面以及从法规层面我们都需要打开黑盒模型对模型进行解释可解释AI正是解决该类问题的技术。
本章的学习目标包括:
- 掌握可解释AI的目标和应用场景
- 掌握常见的可解释AI方法类型及其对应的典型方法
- 思考可解释AI方法的未来发展
```toc
:maxdepth: 2
explainable_ai
```