Files
openmlsys-zh/chapter_introduction/machine_learning_applications.md
2022-01-27 10:52:02 +08:00

19 lines
2.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
## 机器学习应用
通俗来讲机器学习是指从数据中学习出有用知识的计算技术。从处理的数据类型和学习模式来说机器学习可以分为监督学习Supervised
Learning、无监督学习Unsupervised Learning、强化学习Reinforcement
Learning等等。监督学习是已知输入输出对应关系情况下的学习比如给定输入图像和它对应的内容标签则学习图像分类Classification而无监督学习是只有输入数据但不知道输出标签情况下的学习比如给定一堆猫和狗的图像自主学会猫和狗的分类这种无监督分类也称为聚类Clustering强化学习则是给定一个学习环境和任务目标算法自主地去不断尝试、改进自己、以实现任务目标。比如AlphaGo围棋就是用强化学习实现的给定的环境是围棋的规则、而目标则是胜利得分。
从应用领域上划分,主要可以包括计算机视觉、自然语言处理和智能决策这三大部分,而且这三大部分之间也有很多交集。
狭义上来讲基于图像的应用都可归为计算机视觉方面的应用,典型的应用有人脸识别、物体识别、目标跟踪、人体姿态估计、以及图像的理解、修复、分割与检测等等。
计算机视觉方法广泛应用于自动驾驶、智慧城市、智慧安防等领域。
自然语言处理涉及文本或者语音方面的应用,典型的应用包括语言翻译、文本转语音、语音转文本、以及文本理解、分类、风格变换与纠错等等。
计算机视觉和自然语言处理有很多交集,例如图像的文本描述生成、基于文本的图像生成、基于文本的图像处理等应用都同时涉及到了语言和图像两种数据类型。
智能决策方面,往往通过结合计算机视觉、自然语言处理、强化学习、控制论等技术手段,实现决策类任务,广泛用于机器人、自动驾驶、游戏、推荐系统、智能工厂、智能电网等领域。
经典的机器学习算法有支持向量机(Support Vector
MachineSVM)、逻辑回归Logistic Regression、朴素贝叶斯Naive
Bayes
等方法。然而得力于大数据互联网和计算机性能的提升以深度学习Deep
Learning为代表的方法得到了广泛的研究和应用。
虽然机器学习算法很多,但无论是经典算法还是深度学习算法的计算往往以向量、矩阵运算为主体的,因此本书主要通过深度神经网络为例子展开机器学习系统的介绍。下面我们来快速了解一下机器学习系统的设计需求、目标、以及其组成原理。