17 KiB
《TCP/IP网络编程》学习笔记
:flags:此仓库是我的《TCP/IP网络编程》学习笔记及具体代码实现,代码部分请参考本仓库对应章节文件夹下的代码。
我的环境是:Ubuntu18.04 LTS
编译器版本:g++ (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0 和 gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0
所以本笔记中只学习有关于 Linux 的部分。
第一章:理解网络编程和套接字
本章代码,在TCP-IP-NetworkNote中可以找到,直接点连接可能进不去。
1.1 理解网络编程和套接字
1.1.1构建打电话套接字
以电话机打电话的方式来理解套接字。
调用 socket 函数(安装电话机)时进行的对话:
问:接电话需要准备什么?
答:当然是电话机。
有了电话机才能安装电话,于是就要准备一个电话机,下面函数相当于电话机的套接字。
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
//成功时返回文件描述符,失败时返回-1
调用 bind 函数(分配电话号码)时进行的对话:
问:请问我的电话号码是多少
答:我的电话号码是123-1234
套接字同样如此。就想给电话机分配电话号码一样,利用以下函数给创建好的套接字分配地址信息(IP地址和端口号):
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *myaddr, socklen_t addrlen);
//成功时返回0,失败时返回-1
调用 bind 函数给套接字分配地址之后,就基本完成了所有的准备工作。接下来是需要连接电话线并等待来电。
调用 listen 函数(连接电话线)时进行的对话:
问:已架设完电话机后是否只需链接电话线?
答:对,只需要连接就能接听电话。
一连接电话线,电话机就可以转换为可接听状态,这时其他人可以拨打电话请求连接到该机。同样,需要把套接字转化成可接受连接状态。
#include <sys/socket.h>
int listen(int sockfd, int backlog);
//成功时返回0,失败时返回-1
连接好电话线以后,如果有人拨打电话就响铃,拿起话筒才能接听电话。
调用 accept 函数(拿起话筒)时进行的对话:
问:电话铃响了,我该怎么办?
答:接听啊。
#include <sys/socket.h>
int accept(int sockfd,struct sockaddr *addr,socklen_t *addrlen);
//成功时返回文件描述符,失败时返回-1
网络编程中和接受连接请求的套接字创建过程可整理如下:
- 第一步:调用 socket 函数创建套接字。
- 第二步:调用 bind 函数分配IP地址和端口号。
- 第三步:调用 listen 函数转换为可接受请求状态。
- 第四步:调用 accept 函数受理套接字请求。
1.1.2 编写Hello World套接字程序
服务端:
服务器端(server)是能够受理连接请求的程序。下面构建服务端以验证之前提到的函数调用过程,该服务器端收到连接请求后向请求者返回Hello World!答复。除各种函数的调用顺序外,我们还未涉及任何实际编程。因此,阅读代码时请重点关注套接字相关的函数调用过程,不必理解全过程。
服务器端代码请参见:hello_server.c
客户端:
客户端程序只有调用 socket 函数创建套接字 和 调用 connect 函数向服务端发送连接请求这两个步骤,下面给出客户端,需要查看以下两方面的内容:
- 调用 socket 函数 和 connect 函数
- 与服务端共同运行以收发字符串数据
客户端代码请参见:hello_client.c
编译:
分别对客户端和服务端程序进行编译:
gcc hello_server.c -o hserver
gcc hello_client.c -o hclient
运行:
./hserver 9190
./hclient 127.0.0.1 9190
运行的时候,首先再 9190 端口启动服务,然后 heserver 就会一直等待客户端进行响应,当客户端监听位于本地的 IP 为 127.0.0.1 的地址的9190端口时,客户端就会收到服务端的回应,输出Hello World!
1.2 基于 Linux 的文件操作
讨论套接字的过程中突然谈及文件也许有些奇怪。但是对于 Linux 而言,socket 操作与文件操作没有区别,因而有必要详细了解文件。在 Linux 世界里,socket 也被认为是文件的一种,因此在网络数据传输过程中自然可以使用 I/O 的相关函数。Windows 与 Linux 不同,是要区分 socket 和文件的。因此在 Windows 中需要调用特殊的数据传输相关函数。
1.2.1 底层访问和文件描述符
分配给标准输入输出及标准错误的文件描述符。
| 文件描述符 | 对象 |
|---|---|
| 0 | 标准输入:Standard Input |
| 1 | 标准输出:Standard Output |
| 2 | 标准错误:Standard Error |
文件和套接字一般经过创建过程才会被分配文件描述符。
文件描述符也被称为「文件句柄」,但是「句柄」主要是 Windows 中的术语。因此,在本书中如果设计 Windows 平台将使用「句柄」,如果是 Linux 将使用「描述符」。
1.2.2 打开文件:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int flag);
/*
成功时返回文件描述符,失败时返回-1
path : 文件名的字符串地址
flag : 文件打开模式信息
*/
文件打开模式如下表:
| 打开模式 | 含义 |
|---|---|
| O_CREAT | 必要时创建文件 |
| O_TRUNC | 删除全部现有数据 |
| O_APPEND | 维持现有数据,保存到其后面 |
| O_RDONLY | 只读打开 |
| O_WRONLY | 只写打开 |
| O_RDWR | 读写打开 |
1.2.3 关闭文件:
#include <unistd.h>
int close(int fd);
/*
成功时返回 0 ,失败时返回 -1
fd : 需要关闭的文件或套接字的文件描述符
*/
若调用此函数同时传递文件描述符参数,则关闭(终止)响应文件。另外需要注意的是,此函数不仅可以关闭文件,还可以关闭套接字。再次证明了「Linux 操作系统不区分文件与套接字」的特点。
1.2.4 将数据写入文件:
#include <unistd.h>
ssize_t write(int fd, const void *buf, size_t nbytes);
/*
成功时返回写入的字节数 ,失败时返回 -1
fd : 显示数据传输对象的文件描述符
buf : 保存要传输数据的缓冲值地址
nbytes : 要传输数据的字节数
*/
在此函数的定义中,size_t 是通过 typedef 声明的 unsigned int 类型。对 ssize_t 来说,ssize_t 前面多加的 s 代表 signed ,即 ssize_t 是通过 typedef 声明的 signed int 类型。
创建新文件并保存数据:
代码见:low_open.c
编译运行:
gcc low_open.c -o lopen
./lopen
然后会生成一个data.txt的文件,里面有Let's go!
1.2.5 读取文件中的数据:
与之前的write()函数相对应,read()用来输入(接收)数据。
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t nbytes);
/*
成功时返回接收的字节数(但遇到文件结尾则返回 0),失败时返回 -1
fd : 显示数据接收对象的文件描述符
buf : 要保存接收的数据的缓冲地址值。
nbytes : 要接收数据的最大字节数
*/
下面示例通过 read() 函数读取 data.txt 中保存的数据。
代码见:low_read.c
编译运行:
gcc low_read.c -o lread
./lread
在上一步的 data.txt 文件与没有删的情况下,会输出:
file descriptor: 3
file data: Let's go!
关于文件描述符的 I/O 操作到此结束,要明白,这些内容同样适合于套接字。
1.2.6 文件描述符与套接字
下面将同时创建文件和套接字,并用整数型态比较返回的文件描述符的值.
代码见:fd_seri.c
编译运行:
gcc fd_seri.c -o fds
./fds
输出结果:
file descriptor 1: 3
file descriptor 2: 15
file descriptor 3: 16
1.3 基于 Windows 平台的实现
暂略
1.4 基于 Windows 的套接字相关函数及示例
暂略
1.5 习题
:heavy_exclamation_mark:以下部分的答案,仅代表我个人观点,可能不是正确答案
-
套接字在网络编程中的作用是什么?为何称它为套接字?
答:操作系统会提供「套接字」(socket)的部件,套接字是网络数据传输用的软件设备。因此,「网络编程」也叫「套接字编程」。「套接字」就是用来连接网络的工具。
-
在服务器端创建套接字以后,会依次调用 listen 函数和 accept 函数。请比较二者作用。
答:调用 listen 函数将套接字转换成可受连接状态(监听),调用 accept 函数受理连接请求。如果在没有连接请求的情况下调用该函数,则不会返回,直到有连接请求为止。
-
Linux 中,对套接字数据进行 I/O 时可以直接使用文件 I/O 相关函数;而在 Windows 中则不可以。原因为何?
答:暂略。
-
创建套接字后一般会给他分配地址,为什么?为了完成地址分配需要调用哪个函数?
答:套接字被创建之后,只有为其分配了IP地址和端口号后,客户端才能够通过IP地址及端口号与服务器端建立连接,需要调用 bind 函数来完成地址分配。
-
Linux 中的文件描述符与 Windows 的句柄实际上非常类似。请以套接字为对象说明它们的含义。
答:暂略。
-
底层 I/O 函数与 ANSI 标准定义的文件 I/O 函数有何区别?
答:文件 I/O 又称为低级磁盘 I/O,遵循 POSIX 相关标准。任何兼容 POSIX 标准的操作系统上都支持文件I/O。标准 I/O 被称为高级磁盘 I/O,遵循 ANSI C 相关标准。只要开发环境中有标准 I/O 库,标准 I/O 就可以使用。(Linux 中使用的是 GLIBC,它是标准C库的超集。不仅包含 ANSI C 中定义的函数,还包括 POSIX 标准中定义的函数。因此,Linux 下既可以使用标准 I/O,也可以使用文件 I/O)。
-
参考本书给出的示例
low_open.c和low_read.c,分别利用底层文件 I/O 和 ANSI 标准 I/O 编写文件复制程序。可任意指定复制程序的使用方法。答:暂略。
第二章 套接字类型与协议设置
本章代码,在TCP-IP-NetworkNote中可以找到,直接点连接可能进不去。
本章仅需了解创建套接字时调用的 socket 函数。
2.1 套接字协议及数据传输特性
2.1.1 创建套接字
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
/*
成功时返回文件描述符,失败时返回-1
domain: 套接字中使用的协议族(Protocol Family)
type: 套接字数据传输的类型信息
protocol: 计算机间通信中使用的协议信息
*/
2.1.2 协议族(Protocol Family)
通过 socket 函数的第一个参数传递套接字中使用的协议分类信息。此协议分类信息称为协议族,可分成如下几类:
头文件
sys/socket.h中声明的协议族
| 名称 | 协议族 |
|---|---|
| PF_INET | IPV4 互联网协议族 |
| PF_INET6 | IPV6 互联网协议族 |
| PF_LOCAL | 本地通信 Unix 协议族 |
| PF_PACKET | 底层套接字的协议族 |
| PF_IPX | IPX Novel 协议族 |
本书着重讲 PF_INET 对应的 IPV4 互联网协议族。其他协议并不常用,或并未普及。另外,套接字中采用的最终的协议信息是通过 socket 函数的第三个参数传递的。在指定的协议族范围内通过第一个参数决定第三个参数。
2.1.3 套接字类型(Type)
套接字类型指的是套接字的数据传输方式,是通过 socket 函数的第二个参数进行传递,只有这样才能决定创建的套接字的数据传输方式。已经通过第一个参数传递了协议族信息,为什么还要决定数据传输方式?问题就在于,决定了协议族并不能同时决定数据传输方式。换言之, socket 函数的第一个参数 PF_INET 协议族中也存在多种数据传输方式。
2.1.4 套接字类型1:面向连接的套接字(SOCK_STREAM)
如果 socket 函数的第二个参数传递SOCK_STREAM,将创建面向连接的套接字。
传输方式特征整理如下:
- 传输过程中数据不会消失
- 按序传输数据
- 传输的数据不存在数据边界(Boundary)
这种情形适用于之前说过的 write 和 read 函数
传输数据的计算机通过调用3次 write 函数传递了 100 字节的数据,但是接受数据的计算机仅仅通过调用 1 次 read 函数调用就接受了全部 100 个字节。
收发数据的套接字内部有缓冲(buffer),简言之就是字节数组。只要不超过数组容量,那么数据填满缓冲后过 1 次 read 函数的调用就可以读取全部,也有可能调用多次来完成读取。
套接字缓冲已满是否意味着数据丢失?
答:缓冲并不总是满的。如果读取速度比数据传入过来的速度慢,则缓冲可能被填满,但是这时也不会丢失数据,因为传输套接字此时会停止数据传输,所以面向连接的套接字不会发生数据丢失。
套接字联机必须一一对应。面向连接的套接字可总结为:
可靠地、按序传递的、基于字节的面向连接的数据传输方式的套接字。
2.1.5 面向消息的套接字(SOCK_DGRAM)
如果 socket 函数的第二个参数传递SOCK_DGRAM,则将创建面向消息的套接字。面向消息的套接字可以比喻成高速移动的摩托车队。特点如下:
- 强调快速传输而非传输有序
- 传输的数据可能丢失也可能损毁
- 传输的数据有边界
- 限制每次传输数据的大小
面向消息的套接字比面向连接的套接字更具哟传输速度,但可能丢失。特点可总结为:
不可靠的、不按序传递的、以数据的高速传输为目的套接字。
2.1.6 协议的最终选择
socket 函数的第三个参数决定最终采用的协议。前面已经通过前两个参数传递了协议族信息和套接字数据传输方式,这些信息还不够吗?为什么要传输第三个参数呢?
可以应对同一协议族中存在的多个数据传输方式相同的协议,所以数据传输方式相同,但是协议不同,需要用第三个参数指定具体的协议信息。
本书用的是 Ipv4 的协议族,和面向连接的数据传输,满足这两个条件的协议只有 TPPROTO_TCP ,因此可以如下调用 socket 函数创建套接字,这种套接字称为 TCP 套接字。
int tcp_socket = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
SOCK_DGRAM 指的是面向消息的数据传输方式,满足上述条件的协议只有 TPPROTO_UDP 。这种套接字称为 UDP 套接字:
int udp_socket = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
2.1.7 面向连接的套接字:TCP 套接字示例
需要对第一章的代码做出修改,修改好的代码如下:
编译:
gcc tcp_client.c -o hclient
gcc tcp_server.c -o hserver
运行:
./hserver 9190
./hclient 127.0.0.1 9190
结果:
Message from server : Hello World!
Function read call count: 13
从运行结果可以看出服务端发送了13字节的数据,客户端调用13次 read 函数进行读取。
2.2 Windows 平台下的实现及验证
暂略
2.3 习题
-
什么是协议?在收发数据中定义协议有何意义?
答:协议是对话中使用的通信规则,简言之,协议就是为了完成数据交换而定好的约定。在收发数据中定义协议,能够让计算机之间进行正确无误的对话,以此来交换数据。
-
面向连接的套接字 TCP 套接字传输特性有 3 点,请分别说明。
答:①传输过程中数据不会消失②按序传输数据③传输的数据不存在数据边界(Boundary)
-
下面那些是面向消息的套接字的特性?
- 传输数据可能丢失
- 没有数据边界(Boundary)
- 以快速传递为目标
- 不限制每次传输数据大小
- 与面向连接的套接字不同,不存在连接概念
-
下列数据适合用哪类套接字进行传输?
- 演唱会现场直播的多媒体数据(UDP)
- 某人压缩过的文本文件(TCP)
- 网上银行用户与银行之间的数据传递(TCP)
-
何种类型的套接字不存在数据边界?这类套接字接收数据时应该注意什么?
答:TCP 不存在数据边界。在接收数据时,需要保证在接收套接字的缓冲区填充满之时就从buffer里读取数据。也就是,在接收套接字内部,写入buffer的速度要小于读出buffer的速度。
License
本仓库遵循 CC BY-NC-SA 4.0(署名 - 非商业性使用) 协议,转载请注明出处。
