add StanfordCS224N review (#39)

关于StanfordCS224N自然语言处理的课程评价
This commit is contained in:
shenhao
2021-11-29 00:04:09 -06:00
committed by GitHub
parent 5c7100b41d
commit 7dac8a5be9

View File

@@ -0,0 +1,82 @@
课号:[CS224N](http://web.stanford.edu/class/cs224n/)
教授:[Christopher Manning](https://nlp.stanford.edu/~manning/) & [John Hewitt](https://nlp.stanford.edu/~johnhew/)
评论贡献者:[Hao Shen](https://github.com/shenhao-stu)
- [x] Videos [bilibili](https://www.bilibili.com/video/BV11b4y1q7sZ), [Youtube](https://www.youtube.com/playlist?list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ)
- [x] [Projects x N](http://web.stanford.edu/class/cs224n/project.html)
- [x] [Assigments x 5](http://web.stanford.edu/class/cs224n/index.html#schedule)
- [x] [Course Details](https://see.stanford.edu/Course/CS224N#course-details)
- [x] [Complete Notes & Slides](http://web.stanford.edu/class/cs224n/index.html#schedule)
## 课程信息
自然语言处理NLP是人工智能重要的组成部分。从网络搜索、广告、电子邮件到客户服务、语言翻译、虚拟代理、医疗报告等NLP 的应用几乎无处不在。近年来,深度学习方法在许多 NLP 任务上获得了非常高的性能。
而这门课程旨在向学习者介绍自然语言处理(NLP)的基本概念和思想全面了解NLP深度学习的前沿研究。同时通过讲座、作业和期末专题学习者将学习设计、完成和理解自己的神经网络模型的必要技能。
这门课程涉及的主题包括词向量RNNSeq2Seq机器翻译注意力机制Transformer 和预训练模型问答系统自然语言生成T5 和大型语言模型等。
## 适合人群
对自然语言处理感兴趣,想要入门的同学。
## 先修条件
- 能熟练使用Python最好会使用Numpy和Pytorch库
- 线性代数和概率论的课程
- 有一定机器学习的基础
PS个人觉得只要接触过机器学习的课程推荐[吴恩达](https://www.coursera.org/learn/machine-learning)和[李宏毅](https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.html)老师的课程),学这门课都没难度。
以下是官方的prerequisites.
> - Proficiency in Python
>
> All class assignments will be in Python (using [NumPy](https://numpy.org/) and [PyTorch](https://pytorch.org/)). If you need to remind yourself of Python, or you're not very familiar with NumPy, you can come to the Python review session in week 1 (listed in the [schedule](http://web.stanford.edu/class/cs224n/index.html#schedule)). If you have a lot of programming experience but in a different language (e.g. C/C++/Matlab/Java/Javascript), you will probably be fine.
>
> - College Calculus, Linear Algebra (e.g. MATH 51, CME 100)
>
> You should be comfortable taking (multivariable) derivatives and understanding matrix/vector notation and operations.
>
> - Basic Probability and Statistics(e.g. CS 109 or equivalent)
>
> You should know basics of probabilities, gaussian distributions, mean, standard deviation, etc.
>
> - Foundations of Machine Learning (e.g. CS221, CS229, or CS230)
>
> We will be formulating cost functions, taking derivatives and performing optimization with gradient descent. If you already have basic machine learning and/or deep learning knowledge, the course will be easier; however it is possible to take CS224n without it. There are many introductions to ML, in webpage, book, and video form. One approachable introduction is Hal Daumés in-progress [*A Course in Machine Learning*](http://ciml.info/). Reading the first 5 chapters of that book would be good background. Knowing the first 7 chapters would be even better!
## 课程评价
- Christopher Manning 不用多说,学术和讲课水平一致。
> Christopher Manning 是斯坦福大学 AI 实验室主任、人工智能和计算语言学领域的权威专家。他曾先后在卡内基梅隆大学、悉尼大学等任教1999 年回到母校斯坦福就职于计算机科学和语言学系是斯坦福自然语言处理组Stanford NLP Group的创始成员及负责人。
- 课程设计包括了NLP领域中绝大部分的内容同时官网也提供了很多的阅读资料符合各类人群的需求。
> The following texts are useful, but none are required. All of them can be read free online.
>
> - Dan Jurafsky and James H. Martin. [Speech and Language Processing (3rd ed. draft)](https://web.stanford.edu/~jurafsky/slp3/)
> - Jacob Eisenstein. [Natural Language Processing](https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf)
> - Yoav Goldberg. [A Primer on Neural Network Models for Natural Language Processing](http://u.cs.biu.ac.il/~yogo/nnlp.pdf)
> - Ian Goodfellow, Yoshua Bengio, and Aaron Courville. [Deep Learning](http://www.deeplearningbook.org/)
> - Delip Rao and Brian McMahan. [Natural Language Processing with PyTorch](http://library.stanford.edu/sfx?genre=book&atitle=&title=Natural language processing with PyTorch : build intelligent language applications using deep learning /&isbn=9781491978207&volume=&issue=&date=20190101&aulast=Rao, Delip,, author.&spage=&pages=&sid=EBSCO:VLeBooks:edsvle.AH35866319) (requires Stanford login).
>
> If you have no background in neural networks but would like to take the course anyway, you might well find one of these books helpful to give you more background:
>
> - Michael A. Nielsen. [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/)
> - Eugene Charniak. [Introduction to Deep Learning](https://mitpress.mit.edu/books/introduction-deep-learning)
- 课程作业内容有一定的难度,且贴合课程内容。完整的做完作业,对本课程的理解会有很大的帮助。
- 网络上有很多相关的作业代码参考和项目的参考~
## 非官方资料推荐
- 李宏毅老师 [《人类语言处理深度学习课程》](https://speech.ee.ntu.edu.tw/~hylee/dlhlp/2020-spring.html)
- NLP-Beginner自然语言处理入门练习 [FudanNLP](https://github.com/FudanNLP/nlp-beginner)
## 后续课程推荐
-