Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

196 lines
5.7 KiB
C#

/**
* File: time_complexity.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
namespace hello_algo.chapter_computational_complexity;
public class time_complexity {
void Algorithm(int n) {
int a = 1; // +0 (technique 1)
a += n; // +0 (technique 1)
// +n (technique 2)
for (int i = 0; i < 5 * n + 1; i++) {
Console.WriteLine(0);
}
// +n*n (technique 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
Console.WriteLine(0);
}
}
}
// Algorithm A time complexity: constant
void AlgorithmA(int n) {
Console.WriteLine(0);
}
// Algorithm B time complexity: linear
void AlgorithmB(int n) {
for (int i = 0; i < n; i++) {
Console.WriteLine(0);
}
}
// Algorithm C time complexity: constant
void AlgorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
Console.WriteLine(0);
}
}
/* Constant order */
int Constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
/* Linear order */
int Linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
/* Linear order (traversing array) */
int ArrayTraversal(int[] nums) {
int count = 0;
// Number of iterations is proportional to the array length
foreach (int num in nums) {
count++;
}
return count;
}
/* Exponential order */
int Quadratic(int n) {
int count = 0;
// Number of iterations is quadratically related to the data size n
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* Quadratic order (bubble sort) */
int BubbleSort(int[] nums) {
int count = 0; // Counter
// Outer loop: unsorted range is [0, i]
for (int i = nums.Length - 1; i > 0; i--) {
// Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// Swap nums[j] and nums[j + 1]
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
count += 3; // Element swap includes 3 unit operations
}
}
}
return count;
}
/* Exponential order (loop implementation) */
int Exponential(int n) {
int count = 0, bas = 1;
// Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < bas; j++) {
count++;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* Exponential order (recursive implementation) */
int ExpRecur(int n) {
if (n == 1) return 1;
return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;
}
/* Logarithmic order (loop implementation) */
int Logarithmic(int n) {
int count = 0;
while (n > 1) {
n /= 2;
count++;
}
return count;
}
/* Logarithmic order (recursive implementation) */
int LogRecur(int n) {
if (n <= 1) return 0;
return LogRecur(n / 2) + 1;
}
/* Linearithmic order */
int LinearLogRecur(int n) {
if (n <= 1) return 1;
int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* Factorial order (recursive implementation) */
int FactorialRecur(int n) {
if (n == 0) return 1;
int count = 0;
// Split from 1 into n
for (int i = 0; i < n; i++) {
count += FactorialRecur(n - 1);
}
return count;
}
[Test]
public void Test() {
// You can modify n to run and observe the trend of the number of operations for various complexities
int n = 8;
Console.WriteLine("Input data size n = " + n);
int count = Constant(n);
Console.WriteLine("Constant order operation count = " + count);
count = Linear(n);
Console.WriteLine("Linear order operation count = " + count);
count = ArrayTraversal(new int[n]);
Console.WriteLine("Linear order (array traversal) operation count = " + count);
count = Quadratic(n);
Console.WriteLine("Quadratic order operation count = " + count);
int[] nums = new int[n];
for (int i = 0; i < n; i++)
nums[i] = n - i; // [n,n-1,...,2,1]
count = BubbleSort(nums);
Console.WriteLine("Quadratic order (bubble sort) operation count = " + count);
count = Exponential(n);
Console.WriteLine("Exponential order (loop implementation) operation count = " + count);
count = ExpRecur(n);
Console.WriteLine("Exponential order (recursive implementation) operation count = " + count);
count = Logarithmic(n);
Console.WriteLine("Logarithmic order (loop implementation) operation count = " + count);
count = LogRecur(n);
Console.WriteLine("Logarithmic order (recursive implementation) operation count = " + count);
count = LinearLogRecur(n);
Console.WriteLine("Linearithmic order (recursive implementation) operation count = " + count);
count = FactorialRecur(n);
Console.WriteLine("Factorial order (recursive implementation) operation count = " + count);
}
}