Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

91 lines
1.9 KiB
Python

"""
File: space_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import ListNode, TreeNode, print_tree
def function() -> int:
"""Function"""
# Perform some operations
return 0
def constant(n: int):
"""Constant order"""
# Constants, variables, objects occupy O(1) space
a = 0
nums = [0] * 10000
node = ListNode(0)
# Variables in the loop occupy O(1) space
for _ in range(n):
c = 0
# Functions in the loop occupy O(1) space
for _ in range(n):
function()
def linear(n: int):
"""Linear order"""
# A list of length n occupies O(n) space
nums = [0] * n
# A hash table of length n occupies O(n) space
hmap = dict[int, str]()
for i in range(n):
hmap[i] = str(i)
def linear_recur(n: int):
"""Linear order (recursive implementation)"""
print("Recursion n =", n)
if n == 1:
return
linear_recur(n - 1)
def quadratic(n: int):
"""Quadratic order"""
# A 2D list occupies O(n^2) space
num_matrix = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
"""Quadratic order (recursive implementation)"""
if n <= 0:
return 0
# Array nums length is n, n-1, ..., 2, 1
nums = [0] * n
return quadratic_recur(n - 1)
def build_tree(n: int) -> TreeNode | None:
"""Exponential order (build full binary tree)"""
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
"""Driver Code"""
if __name__ == "__main__":
n = 5
# Constant order
constant(n)
# Linear order
linear(n)
linear_recur(n)
# Quadratic order
quadratic(n)
quadratic_recur(n)
# Exponential order
root = build_tree(n)
print_tree(root)