Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

171 lines
4.2 KiB
Rust

/*
* File: time_complexity.rs
* Created Time: 2023-01-10
* Author: xBLACICEx (xBLACKICEx@outlook.com), codingonion (coderonion@gmail.com)
*/
/* Constant order */
fn constant(n: i32) -> i32 {
_ = n;
let mut count = 0;
let size = 100_000;
for _ in 0..size {
count += 1;
}
count
}
/* Linear order */
fn linear(n: i32) -> i32 {
let mut count = 0;
for _ in 0..n {
count += 1;
}
count
}
/* Linear order (traversing array) */
fn array_traversal(nums: &[i32]) -> i32 {
let mut count = 0;
// Number of iterations is proportional to the array length
for _ in nums {
count += 1;
}
count
}
/* Exponential order */
fn quadratic(n: i32) -> i32 {
let mut count = 0;
// Number of iterations is quadratically related to the data size n
for _ in 0..n {
for _ in 0..n {
count += 1;
}
}
count
}
/* Quadratic order (bubble sort) */
fn bubble_sort(nums: &mut [i32]) -> i32 {
let mut count = 0; // Counter
// Outer loop: unsorted range is [0, i]
for i in (1..nums.len()).rev() {
// Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range
for j in 0..i {
if nums[j] > nums[j + 1] {
// Swap nums[j] and nums[j + 1]
let tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // Element swap includes 3 unit operations
}
}
}
count
}
/* Exponential order (loop implementation) */
fn exponential(n: i32) -> i32 {
let mut count = 0;
let mut base = 1;
// Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0..n {
for _ in 0..base {
count += 1
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
}
/* Exponential order (recursive implementation) */
fn exp_recur(n: i32) -> i32 {
if n == 1 {
return 1;
}
exp_recur(n - 1) + exp_recur(n - 1) + 1
}
/* Logarithmic order (loop implementation) */
fn logarithmic(mut n: i32) -> i32 {
let mut count = 0;
while n > 1 {
n = n / 2;
count += 1;
}
count
}
/* Logarithmic order (recursive implementation) */
fn log_recur(n: i32) -> i32 {
if n <= 1 {
return 0;
}
log_recur(n / 2) + 1
}
/* Linearithmic order */
fn linear_log_recur(n: i32) -> i32 {
if n <= 1 {
return 1;
}
let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2);
for _ in 0..n {
count += 1;
}
return count;
}
/* Factorial order (recursive implementation) */
fn factorial_recur(n: i32) -> i32 {
if n == 0 {
return 1;
}
let mut count = 0;
// Split from 1 into n
for _ in 0..n {
count += factorial_recur(n - 1);
}
count
}
/* Driver Code */
fn main() {
// You can modify n to run and observe the trend of the number of operations for various complexities
let n: i32 = 8;
println!("Input data size n = {}", n);
let mut count = constant(n);
println!("Constant-time operations count = {}", count);
count = linear(n);
println!("Linear-time operations count = {}", count);
count = array_traversal(&vec![0; n as usize]);
println!("Linear-time (array traversal) operations count = {}", count);
count = quadratic(n);
println!("Quadratic-time operations count = {}", count);
let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
count = bubble_sort(&mut nums);
println!("Quadratic-time (bubble sort) operations count = {}", count);
count = exponential(n);
println!("Exponential-time (iterative) operations count = {}", count);
count = exp_recur(n);
println!("Exponential-time (recursive) operations count = {}", count);
count = logarithmic(n);
println!("Logarithmic-time (iterative) operations count = {}", count);
count = log_recur(n);
println!("Logarithmic-time (recursive) operations count = {}", count);
count = linear_log_recur(n);
println!("Linearithmic-time (recursive) operations count = {}", count);
count = factorial_recur(n);
println!("Factorial-time (recursive) operations count = {}", count);
}