mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2026-02-02 18:39:09 +08:00
3602 lines
93 KiB
Markdown
Executable File
3602 lines
93 KiB
Markdown
Executable File
* [做项目(多个C++、Java、Go、测开、前端项目)](https://www.programmercarl.com/other/kstar.html)
|
||
* [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html)
|
||
* [背八股(40天挑战高频面试题)](https://www.programmercarl.com/xunlian/bagu.html)
|
||
|
||
|
||
|
||
# 二叉树层序遍历登场!
|
||
|
||
## 算法公开课
|
||
|
||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[讲透二叉树的层序遍历 | 广度优先搜索 | LeetCode:102.二叉树的层序遍历](https://www.bilibili.com/video/BV1GY4y1u7b2),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
|
||
|
||
|
||
学会二叉树的层序遍历,可以一口气打完以下十题:
|
||
|
||
* [102.二叉树的层序遍历](https://leetcode.cn/problems/binary-tree-level-order-traversal/)
|
||
* [107.二叉树的层次遍历II](https://leetcode.cn/problems/binary-tree-level-order-traversal-ii/)
|
||
* [199.二叉树的右视图](https://leetcode.cn/problems/binary-tree-right-side-view/)
|
||
* [637.二叉树的层平均值](https://leetcode.cn/problems/average-of-levels-in-binary-tree/)
|
||
* [429.N叉树的层序遍历](https://leetcode.cn/problems/n-ary-tree-level-order-traversal/)
|
||
* [515.在每个树行中找最大值](https://leetcode.cn/problems/find-largest-value-in-each-tree-row/)
|
||
* [116.填充每个节点的下一个右侧节点指针](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node/)
|
||
* [117.填充每个节点的下一个右侧节点指针II](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node-ii/)
|
||
* [104.二叉树的最大深度](https://leetcode.cn/problems/maximum-depth-of-binary-tree/)
|
||
* [111.二叉树的最小深度](https://leetcode.cn/problems/minimum-depth-of-binary-tree/)
|
||
|
||
|
||
|
||

|
||
|
||
|
||
|
||
|
||
## 102.二叉树的层序遍历
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/binary-tree-level-order-traversal/)
|
||
|
||
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
|
||
|
||

|
||
|
||
### 思路
|
||
|
||
我们之前讲过了三篇关于二叉树的深度优先遍历的文章:
|
||
|
||
* [二叉树:前中后序递归法](https://programmercarl.com/二叉树的递归遍历.html)
|
||
* [二叉树:前中后序迭代法](https://programmercarl.com/二叉树的迭代遍历.html)
|
||
* [二叉树:前中后序迭代方式统一写法](https://programmercarl.com/二叉树的统一迭代法.html)
|
||
|
||
接下来我们再来介绍二叉树的另一种遍历方式:层序遍历。
|
||
|
||
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。
|
||
|
||
需要借用一个辅助数据结构即队列来实现,**队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。**
|
||
|
||
**而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。**
|
||
|
||
使用队列实现二叉树广度优先遍历,动画如下:
|
||
|
||

|
||
|
||
这样就实现了层序从左到右遍历二叉树。
|
||
|
||
代码如下:**这份代码也可以作为二叉树层序遍历的模板,打十个就靠它了**。
|
||
|
||
c++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<vector<int>> levelOrder(TreeNode* root) {
|
||
queue<TreeNode*> que;
|
||
if (root != NULL) que.push(root);
|
||
vector<vector<int>> result;
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
vector<int> vec;
|
||
// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
vec.push_back(node->val);
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
result.push_back(vec);
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
```CPP
|
||
# 递归法
|
||
class Solution {
|
||
public:
|
||
void order(TreeNode* cur, vector<vector<int>>& result, int depth)
|
||
{
|
||
if (cur == nullptr) return;
|
||
if (result.size() == depth) result.push_back(vector<int>());
|
||
result[depth].push_back(cur->val);
|
||
order(cur->left, result, depth + 1);
|
||
order(cur->right, result, depth + 1);
|
||
}
|
||
vector<vector<int>> levelOrder(TreeNode* root) {
|
||
vector<vector<int>> result;
|
||
int depth = 0;
|
||
order(root, result, depth);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Java:
|
||
|
||
```Java
|
||
// 102.二叉树的层序遍历
|
||
class Solution {
|
||
public List<List<Integer>> resList = new ArrayList<List<Integer>>();
|
||
|
||
public List<List<Integer>> levelOrder(TreeNode root) {
|
||
//checkFun01(root,0);
|
||
checkFun02(root);
|
||
|
||
return resList;
|
||
}
|
||
|
||
//BFS--递归方式
|
||
public void checkFun01(TreeNode node, Integer deep) {
|
||
if (node == null) return;
|
||
deep++;
|
||
|
||
if (resList.size() < deep) {
|
||
//当层级增加时,list的Item也增加,利用list的索引值进行层级界定
|
||
List<Integer> item = new ArrayList<Integer>();
|
||
resList.add(item);
|
||
}
|
||
resList.get(deep - 1).add(node.val);
|
||
|
||
checkFun01(node.left, deep);
|
||
checkFun01(node.right, deep);
|
||
}
|
||
|
||
//BFS--迭代方式--借助队列
|
||
public void checkFun02(TreeNode node) {
|
||
if (node == null) return;
|
||
Queue<TreeNode> que = new LinkedList<TreeNode>();
|
||
que.offer(node);
|
||
|
||
while (!que.isEmpty()) {
|
||
List<Integer> itemList = new ArrayList<Integer>();
|
||
int len = que.size();
|
||
|
||
while (len > 0) {
|
||
TreeNode tmpNode = que.poll();
|
||
itemList.add(tmpNode.val);
|
||
|
||
if (tmpNode.left != null) que.offer(tmpNode.left);
|
||
if (tmpNode.right != null) que.offer(tmpNode.right);
|
||
len--;
|
||
}
|
||
|
||
resList.add(itemList);
|
||
}
|
||
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Python:
|
||
|
||
|
||
```python
|
||
# 利用长度法
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
|
||
if not root:
|
||
return []
|
||
queue = collections.deque([root])
|
||
result = []
|
||
while queue:
|
||
level = []
|
||
for _ in range(len(queue)):
|
||
cur = queue.popleft()
|
||
level.append(cur.val)
|
||
if cur.left:
|
||
queue.append(cur.left)
|
||
if cur.right:
|
||
queue.append(cur.right)
|
||
result.append(level)
|
||
return result
|
||
```
|
||
```python
|
||
#递归法
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
|
||
if not root:
|
||
return []
|
||
|
||
levels = []
|
||
|
||
def traverse(node, level):
|
||
if not node:
|
||
return
|
||
|
||
if len(levels) == level:
|
||
levels.append([])
|
||
|
||
levels[level].append(node.val)
|
||
traverse(node.left, level + 1)
|
||
traverse(node.right, level + 1)
|
||
|
||
traverse(root, 0)
|
||
return levels
|
||
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```go
|
||
/**
|
||
102. 二叉树的递归遍历
|
||
*/
|
||
func levelOrder(root *TreeNode) [][]int {
|
||
arr := [][]int{}
|
||
|
||
depth := 0
|
||
|
||
var order func(root *TreeNode, depth int)
|
||
|
||
order = func(root *TreeNode, depth int) {
|
||
if root == nil {
|
||
return
|
||
}
|
||
if len(arr) == depth {
|
||
arr = append(arr, []int{})
|
||
}
|
||
arr[depth] = append(arr[depth], root.Val)
|
||
|
||
order(root.Left, depth+1)
|
||
order(root.Right, depth+1)
|
||
}
|
||
|
||
order(root, depth)
|
||
|
||
return arr
|
||
}
|
||
```
|
||
|
||
```go
|
||
/**
|
||
102. 二叉树的层序遍历 使用container包
|
||
*/
|
||
func levelOrder(root *TreeNode) [][]int {
|
||
res := [][]int{}
|
||
if root == nil{//防止为空
|
||
return res
|
||
}
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
|
||
var tmpArr []int
|
||
|
||
for queue.Len() > 0 {
|
||
length := queue.Len() //保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode) //出队列
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
tmpArr = append(tmpArr, node.Val) //将值加入本层切片中
|
||
}
|
||
res = append(res, tmpArr) //放入结果集
|
||
tmpArr = []int{} //清空层的数据
|
||
}
|
||
|
||
return res
|
||
}
|
||
|
||
/**
|
||
102. 二叉树的层序遍历 使用切片
|
||
*/
|
||
func levelOrder(root *TreeNode) [][]int {
|
||
res := make([][]int, 0)
|
||
if root == nil {
|
||
return res
|
||
}
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
level := make([]int, 0)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
level = append(level, node.Val)
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
res = append(res, level)
|
||
}
|
||
return res
|
||
}
|
||
|
||
/**
|
||
102. 二叉树的层序遍历:使用切片模拟队列,易理解
|
||
*/
|
||
func levelOrder(root *TreeNode) (res [][]int) {
|
||
if root == nil {
|
||
return
|
||
}
|
||
|
||
curLevel := []*TreeNode{root} // 存放当前层节点
|
||
for len(curLevel) > 0 {
|
||
nextLevel := []*TreeNode{} // 准备通过当前层生成下一层
|
||
vals := []int{}
|
||
|
||
for _, node := range curLevel {
|
||
vals = append(vals, node.Val) // 收集当前层的值
|
||
// 收集下一层的节点
|
||
if node.Left != nil {
|
||
nextLevel = append(nextLevel, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
nextLevel = append(nextLevel, node.Right)
|
||
}
|
||
}
|
||
res = append(res, vals)
|
||
curLevel = nextLevel // 将下一层变成当前层
|
||
}
|
||
|
||
return
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
var levelOrder = function(root) {
|
||
//二叉树的层序遍历
|
||
let res = [], queue = [];
|
||
queue.push(root);
|
||
if(root === null) {
|
||
return res;
|
||
}
|
||
while(queue.length !== 0) {
|
||
// 记录当前层级节点数
|
||
let length = queue.length;
|
||
//存放每一层的节点
|
||
let curLevel = [];
|
||
for(let i = 0;i < length; i++) {
|
||
let node = queue.shift();
|
||
curLevel.push(node.val);
|
||
// 存放当前层下一层的节点
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
//把每一层的结果放到结果数组
|
||
res.push(curLevel);
|
||
}
|
||
return res;
|
||
};
|
||
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function levelOrder(root: TreeNode | null): number[][] {
|
||
let helperQueue: TreeNode[] = [];
|
||
let res: number[][] = [];
|
||
let tempArr: number[] = [];
|
||
if (root !== null) helperQueue.push(root);
|
||
let curNode: TreeNode;
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
curNode = helperQueue.shift()!;
|
||
tempArr.push(curNode.val);
|
||
if (curNode.left !== null) {
|
||
helperQueue.push(curNode.left);
|
||
}
|
||
if (curNode.right !== null) {
|
||
helperQueue.push(curNode.right);
|
||
}
|
||
}
|
||
res.push(tempArr);
|
||
tempArr = [];
|
||
}
|
||
return res;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func levelOrder(_ root: TreeNode?) -> [[Int]] {
|
||
var result = [[Int]]()
|
||
guard let root = root else { return result }
|
||
// 表示一层
|
||
var queue = [root]
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var subarray = [Int]()
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
subarray.append(node.val)
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node) }
|
||
}
|
||
result.append(subarray)
|
||
}
|
||
|
||
return result
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 102.二叉树的层序遍历
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def levelOrder(root: TreeNode): List[List[Int]] = {
|
||
val res = mutable.ListBuffer[List[Int]]()
|
||
if (root == null) return res.toList
|
||
val queue = mutable.Queue[TreeNode]() // 声明一个队列
|
||
queue.enqueue(root) // 把根节点加入queue
|
||
while (!queue.isEmpty) {
|
||
val tmp = mutable.ListBuffer[Int]()
|
||
val len = queue.size // 求出len的长度
|
||
for (i <- 0 until len) { // 从0到当前队列长度的所有节点都加入到结果集
|
||
val curNode = queue.dequeue()
|
||
tmp.append(curNode.value)
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
res.append(tmp.toList)
|
||
}
|
||
res.toList
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::rc::Rc;
|
||
use std::collections::VecDeque;
|
||
impl Solution {
|
||
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
|
||
let mut res = vec![];
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
let mut temp = vec![];
|
||
for _ in 0..queue.len() {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
temp.push(node.borrow().val);
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
res.push(temp);
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
### C#
|
||
```csharp
|
||
public IList<IList<int>> LevelOrder(TreeNode root)
|
||
{
|
||
var res = new List<IList<int>>();
|
||
var que = new Queue<TreeNode>();
|
||
if (root == null) return res;
|
||
que.Enqueue(root);
|
||
while (que.Count != 0)
|
||
{
|
||
var size = que.Count;
|
||
var vec = new List<int>();
|
||
for (int i = 0; i < size; i++)
|
||
{
|
||
var cur = que.Dequeue();
|
||
vec.Add(cur.val);
|
||
if (cur.left != null) que.Enqueue(cur.left);
|
||
if (cur.right != null) que.Enqueue(cur.right);
|
||
}
|
||
res.Add(vec);
|
||
|
||
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
|
||
**此时我们就掌握了二叉树的层序遍历了,那么如下九道力扣上的题目,只需要修改模板的两三行代码(不能再多了),便可打倒!**
|
||
|
||
|
||
## 107.二叉树的层次遍历 II
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/binary-tree-level-order-traversal-ii/)
|
||
|
||
给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)
|
||
|
||

|
||
|
||
### 思路
|
||
|
||
相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<vector<int>> levelOrderBottom(TreeNode* root) {
|
||
queue<TreeNode*> que;
|
||
if (root != NULL) que.push(root);
|
||
vector<vector<int>> result;
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
vector<int> vec;
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
vec.push_back(node->val);
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
result.push_back(vec);
|
||
}
|
||
reverse(result.begin(), result.end()); // 在这里反转一下数组即可
|
||
return result;
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
class Solution:
|
||
"""二叉树层序遍历II迭代解法"""
|
||
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def levelOrderBottom(self, root: TreeNode) -> List[List[int]]:
|
||
if not root:
|
||
return []
|
||
queue = collections.deque([root])
|
||
result = []
|
||
while queue:
|
||
level = []
|
||
for _ in range(len(queue)):
|
||
cur = queue.popleft()
|
||
level.append(cur.val)
|
||
if cur.left:
|
||
queue.append(cur.left)
|
||
if cur.right:
|
||
queue.append(cur.right)
|
||
result.append(level)
|
||
return result[::-1]
|
||
```
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
// 107. 二叉树的层序遍历 II
|
||
public class N0107 {
|
||
|
||
/**
|
||
* 解法:队列,迭代。
|
||
* 层序遍历,再翻转数组即可。
|
||
*/
|
||
public List<List<Integer>> solution1(TreeNode root) {
|
||
List<List<Integer>> list = new ArrayList<>();
|
||
Deque<TreeNode> que = new LinkedList<>();
|
||
|
||
if (root == null) {
|
||
return list;
|
||
}
|
||
|
||
que.offerLast(root);
|
||
while (!que.isEmpty()) {
|
||
List<Integer> levelList = new ArrayList<>();
|
||
|
||
int levelSize = que.size();
|
||
for (int i = 0; i < levelSize; i++) {
|
||
TreeNode peek = que.peekFirst();
|
||
levelList.add(que.pollFirst().val);
|
||
|
||
if (peek.left != null) {
|
||
que.offerLast(peek.left);
|
||
}
|
||
if (peek.right != null) {
|
||
que.offerLast(peek.right);
|
||
}
|
||
}
|
||
list.add(levelList);
|
||
}
|
||
|
||
List<List<Integer>> result = new ArrayList<>();
|
||
for (int i = list.size() - 1; i >= 0; i-- ) {
|
||
result.add(list.get(i));
|
||
}
|
||
|
||
return result;
|
||
}
|
||
}
|
||
```
|
||
|
||
```java
|
||
/**
|
||
* 思路和模板相同, 对收集答案的方式做了优化, 最后不需要反转
|
||
*/
|
||
class Solution {
|
||
public List<List<Integer>> levelOrderBottom(TreeNode root) {
|
||
// 利用链表可以进行 O(1) 头部插入, 这样最后答案不需要再反转
|
||
LinkedList<List<Integer>> ans = new LinkedList<>();
|
||
|
||
Queue<TreeNode> q = new LinkedList<>();
|
||
|
||
if (root != null) q.offer(root);
|
||
|
||
while (!q.isEmpty()) {
|
||
int size = q.size();
|
||
|
||
List<Integer> temp = new ArrayList<>();
|
||
|
||
for (int i = 0; i < size; i ++) {
|
||
TreeNode node = q.poll();
|
||
|
||
temp.add(node.val);
|
||
|
||
if (node.left != null) q.offer(node.left);
|
||
|
||
if (node.right != null) q.offer(node.right);
|
||
}
|
||
|
||
// 新遍历到的层插到头部, 这样就满足按照层次反序的要求
|
||
ans.addFirst(temp);
|
||
}
|
||
|
||
return ans;
|
||
}
|
||
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
107. 二叉树的层序遍历 II
|
||
*/
|
||
func levelOrderBottom(root *TreeNode) [][]int {
|
||
queue := list.New()
|
||
res := [][]int{}
|
||
if root == nil{
|
||
return res
|
||
}
|
||
queue.PushBack(root)
|
||
|
||
for queue.Len() > 0 {
|
||
length := queue.Len()
|
||
tmp := []int{}
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
tmp = append(tmp, node.Val)
|
||
}
|
||
res=append(res, tmp)
|
||
}
|
||
|
||
//反转结果集
|
||
for i:=0; i<len(res)/2; i++ {
|
||
res[i], res[len(res)-i-1] = res[len(res)-i-1], res[i]
|
||
}
|
||
|
||
return res
|
||
}
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func levelOrderBottom(root *TreeNode) [][]int {
|
||
res := make([][]int, 0)
|
||
if root == nil {
|
||
return res
|
||
}
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
level := make([]int, 0)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
level = append(level, node.Val)
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
res = append(res, level)
|
||
}
|
||
l, r := 0, len(res)-1
|
||
for l < r {
|
||
res[l], res[r] = res[r], res[l]
|
||
l++
|
||
r--
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
var levelOrderBottom = function (root) {
|
||
let res = [],
|
||
queue = [];
|
||
queue.push(root);
|
||
while (queue.length && root !== null) {
|
||
// 存放当前层级节点数组
|
||
let curLevel = [];
|
||
// 计算当前层级节点数量
|
||
let length = queue.length;
|
||
while (length--) {
|
||
let node = queue.shift();
|
||
// 把当前层节点存入curLevel数组
|
||
curLevel.push(node.val);
|
||
// 把下一层级的左右节点存入queue队列
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
// 从数组前头插入值,避免最后反转数组,减少运算时间
|
||
res.unshift(curLevel);
|
||
}
|
||
return res;
|
||
};
|
||
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function levelOrderBottom(root: TreeNode | null): number[][] {
|
||
let helperQueue: TreeNode[] = [];
|
||
let resArr: number[][] = [];
|
||
let tempArr: number[] = [];
|
||
let tempNode: TreeNode;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
tempNode = helperQueue.shift()!;
|
||
tempArr.push(tempNode.val);
|
||
if (tempNode.left !== null) helperQueue.push(tempNode.left);
|
||
if (tempNode.right !== null) helperQueue.push(tempNode.right);
|
||
}
|
||
resArr.push(tempArr);
|
||
tempArr = [];
|
||
}
|
||
return resArr.reverse();
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func levelOrderBottom(_ root: TreeNode?) -> [[Int]] {
|
||
// 表示一层
|
||
var queue = [TreeNode]()
|
||
if let node = root { queue.append(node) }
|
||
var result = [[Int]]()
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var subarray = [Int]()
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
subarray.append(node.val)
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node)}
|
||
}
|
||
result.append(subarray)
|
||
}
|
||
|
||
return result.reversed()
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 107.二叉树的层次遍历II
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def levelOrderBottom(root: TreeNode): List[List[Int]] = {
|
||
val res = mutable.ListBuffer[List[Int]]()
|
||
if (root == null) return res.toList
|
||
val queue = mutable.Queue[TreeNode]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
val tmp = mutable.ListBuffer[Int]()
|
||
val len = queue.size
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
tmp.append(curNode.value)
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
res.append(tmp.toList)
|
||
}
|
||
// 最后翻转一下
|
||
res.reverse.toList
|
||
}
|
||
|
||
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn level_order_bottom(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
|
||
let mut res = vec![];
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
let mut temp = vec![];
|
||
for _ in 0..queue.len() {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
temp.push(node.borrow().val);
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
res.push(temp);
|
||
}
|
||
res.into_iter().rev().collect()
|
||
}
|
||
}
|
||
```
|
||
### C#
|
||
```csharp
|
||
public IList<IList<int>> LevelOrderBottom(TreeNode root)
|
||
{
|
||
var res = new List<IList<int>>();
|
||
var que = new Queue<TreeNode>();
|
||
if (root == null) return res;
|
||
que.Enqueue(root);
|
||
while (que.Count != 0)
|
||
{
|
||
var size = que.Count;
|
||
var vec = new List<int>();
|
||
for (int i = 0; i < size; i++)
|
||
{
|
||
var cur = que.Dequeue();
|
||
vec.Add(cur.val);
|
||
if (cur.left != null) que.Enqueue(cur.left);
|
||
if (cur.right != null) que.Enqueue(cur.right);
|
||
}
|
||
res.Add(vec);
|
||
}
|
||
res.Reverse();
|
||
return res;
|
||
}
|
||
```
|
||
|
||
## 199.二叉树的右视图
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/binary-tree-right-side-view/)
|
||
|
||
给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
|
||
|
||

|
||
|
||
### 思路
|
||
|
||
层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<int> rightSideView(TreeNode* root) {
|
||
queue<TreeNode*> que;
|
||
if (root != NULL) que.push(root);
|
||
vector<int> result;
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
if (i == (size - 1)) result.push_back(node->val); // 将每一层的最后元素放入result数组中
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def rightSideView(self, root: TreeNode) -> List[int]:
|
||
if not root:
|
||
return []
|
||
|
||
queue = collections.deque([root])
|
||
right_view = []
|
||
|
||
while queue:
|
||
level_size = len(queue)
|
||
|
||
for i in range(level_size):
|
||
node = queue.popleft()
|
||
|
||
if i == level_size - 1:
|
||
right_view.append(node.val)
|
||
|
||
if node.left:
|
||
queue.append(node.left)
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
return right_view
|
||
```
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
// 199.二叉树的右视图
|
||
public class N0199 {
|
||
/**
|
||
* 解法:队列,迭代。
|
||
* 每次返回每层的最后一个字段即可。
|
||
*
|
||
* 小优化:每层右孩子先入队。代码略。
|
||
*/
|
||
public List<Integer> rightSideView(TreeNode root) {
|
||
List<Integer> list = new ArrayList<>();
|
||
Deque<TreeNode> que = new LinkedList<>();
|
||
|
||
if (root == null) {
|
||
return list;
|
||
}
|
||
|
||
que.offerLast(root);
|
||
while (!que.isEmpty()) {
|
||
int levelSize = que.size();
|
||
|
||
for (int i = 0; i < levelSize; i++) {
|
||
TreeNode poll = que.pollFirst();
|
||
|
||
if (poll.left != null) {
|
||
que.addLast(poll.left);
|
||
}
|
||
if (poll.right != null) {
|
||
que.addLast(poll.right);
|
||
}
|
||
|
||
if (i == levelSize - 1) {
|
||
list.add(poll.val);
|
||
}
|
||
}
|
||
}
|
||
|
||
return list;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
199. 二叉树的右视图
|
||
*/
|
||
func rightSideView(root *TreeNode) []int {
|
||
if root == nil {
|
||
return nil
|
||
}
|
||
res := make([]int, 0)
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
|
||
for queue.Len() > 0 {
|
||
length := queue.Len()
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
// 取每层的最后一个元素,添加到结果集中
|
||
if i == length-1 {
|
||
res = append(res, node.Val)
|
||
}
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func rightSideView(root *TreeNode) []int {
|
||
res := make([]int, 0)
|
||
if root == nil {
|
||
return res
|
||
}
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
if i == size-1 {
|
||
res = append(res, node.Val)
|
||
}
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
var rightSideView = function(root) {
|
||
//二叉树右视图 只需要把每一层最后一个节点存储到res数组
|
||
let res = [], queue = [];
|
||
queue.push(root);
|
||
|
||
while(queue.length && root!==null) {
|
||
// 记录当前层级节点个数
|
||
let length = queue.length;
|
||
while(length--) {
|
||
let node = queue.shift();
|
||
// length长度为0的时候表明到了层级最后一个节点
|
||
if(!length) {
|
||
res.push(node.val);
|
||
}
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
}
|
||
|
||
return res;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function rightSideView(root: TreeNode | null): number[] {
|
||
let helperQueue: TreeNode[] = [];
|
||
let resArr: number[] = [];
|
||
let tempNode: TreeNode;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
tempNode = helperQueue.shift()!;
|
||
if (i === length - 1) resArr.push(tempNode.val);
|
||
if (tempNode.left !== null) helperQueue.push(tempNode.left);
|
||
if (tempNode.right !== null) helperQueue.push(tempNode.right);
|
||
}
|
||
}
|
||
return resArr;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func rightSideView(_ root: TreeNode?) -> [Int] {
|
||
// 表示一层
|
||
var queue = [TreeNode]()
|
||
if let node = root { queue.append(node) }
|
||
var result = [Int]()
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
for i in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
if i == count - 1 { result.append(node.val) }
|
||
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node) }
|
||
}
|
||
}
|
||
|
||
return result
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 199.二叉树的右视图
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def rightSideView(root: TreeNode): List[Int] = {
|
||
val res = mutable.ListBuffer[Int]()
|
||
if (root == null) return res.toList
|
||
val queue = mutable.Queue[TreeNode]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
val len = queue.size
|
||
var curNode: TreeNode = null
|
||
for (i <- 0 until len) {
|
||
curNode = queue.dequeue()
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
res.append(curNode.value) // 把最后一个节点的值加入解集
|
||
}
|
||
res.toList // 最后需要把res转换为List,return关键字可以省略
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn right_side_view(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
||
let mut res = vec![];
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
let len = queue.len();
|
||
for i in 0..len {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
if i == len - 1 {
|
||
res.push(node.borrow().val);
|
||
}
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
|
||
#### C#:
|
||
|
||
```C# 199.二叉树的右视图
|
||
public class Solution
|
||
{
|
||
public IList<int> RightSideView(TreeNode root)
|
||
{
|
||
var result = new List<int>();
|
||
Queue<TreeNode> queue = new();
|
||
|
||
if (root != null)
|
||
{
|
||
queue.Enqueue(root);
|
||
}
|
||
while (queue.Count > 0)
|
||
{
|
||
int count = queue.Count;
|
||
int lastValue = count - 1;
|
||
for (int i = 0; i < count; i++)
|
||
{
|
||
var currentNode = queue.Dequeue();
|
||
if (i == lastValue)
|
||
{
|
||
result.Add(currentNode.val);
|
||
}
|
||
|
||
// lastValue == i == count -1 : left 先于 right 进入Queue
|
||
if (currentNode.left != null) queue.Enqueue(currentNode.left);
|
||
if (currentNode.right != null) queue.Enqueue(currentNode.right);
|
||
|
||
//// lastValue == i == 0: right 先于 left 进入Queue
|
||
// if(currentNode.right !=null ) queue.Enqueue(currentNode.right);
|
||
// if(currentNode.left !=null ) queue.Enqueue(currentNode.left);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
}
|
||
```
|
||
|
||
## 637.二叉树的层平均值
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/average-of-levels-in-binary-tree/)
|
||
|
||
给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。
|
||
|
||

|
||
|
||
### 思路
|
||
|
||
本题就是层序遍历的时候把一层求个总和再取一个均值。
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<double> averageOfLevels(TreeNode* root) {
|
||
queue<TreeNode*> que;
|
||
if (root != NULL) que.push(root);
|
||
vector<double> result;
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
double sum = 0; // 统计每一层的和
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
sum += node->val;
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
result.push_back(sum / size); // 将每一层均值放进结果集
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
class Solution:
|
||
"""二叉树层平均值迭代解法"""
|
||
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def averageOfLevels(self, root: TreeNode) -> List[float]:
|
||
if not root:
|
||
return []
|
||
|
||
queue = collections.deque([root])
|
||
averages = []
|
||
|
||
while queue:
|
||
size = len(queue)
|
||
level_sum = 0
|
||
|
||
for i in range(size):
|
||
node = queue.popleft()
|
||
|
||
|
||
level_sum += node.val
|
||
|
||
if node.left:
|
||
queue.append(node.left)
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
averages.append(level_sum / size)
|
||
|
||
return averages
|
||
```
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
// 637. 二叉树的层平均值
|
||
public class N0637 {
|
||
|
||
/**
|
||
* 解法:队列,迭代。
|
||
* 每次返回每层的最后一个字段即可。
|
||
*/
|
||
public List<Double> averageOfLevels(TreeNode root) {
|
||
List<Double> list = new ArrayList<>();
|
||
Deque<TreeNode> que = new LinkedList<>();
|
||
|
||
if (root == null) {
|
||
return list;
|
||
}
|
||
|
||
que.offerLast(root);
|
||
while (!que.isEmpty()) {
|
||
|
||
int levelSize = que.size();
|
||
double levelSum = 0.0;
|
||
for (int i = 0; i < levelSize; i++) {
|
||
TreeNode poll = que.pollFirst();
|
||
|
||
levelSum += poll.val;
|
||
|
||
if (poll.left != null) {
|
||
que.addLast(poll.left);
|
||
}
|
||
if (poll.right != null) {
|
||
que.addLast(poll.right);
|
||
}
|
||
}
|
||
list.add(levelSum / levelSize);
|
||
}
|
||
return list;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
637. 二叉树的层平均值
|
||
*/
|
||
func averageOfLevels(root *TreeNode) []float64 {
|
||
if root == nil {
|
||
// 防止为空
|
||
return nil
|
||
}
|
||
res := make([]float64, 0)
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
|
||
var sum int
|
||
for queue.Len() > 0 {
|
||
//保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
|
||
length := queue.Len()
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
// 当前层元素求和
|
||
sum += node.Val
|
||
}
|
||
// 计算每层的平均值,将结果添加到响应结果中
|
||
res = append(res, float64(sum)/float64(length))
|
||
sum = 0 // 清空该层的数据
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func averageOfLevels(root *TreeNode) []float64 {
|
||
res := make([]float64, 0)
|
||
if root == nil {
|
||
return res
|
||
}
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
sum := 0
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
sum += node.Val
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
res = append(res, float64(sum)/float64(size))
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
var averageOfLevels = function(root) {
|
||
let res = [],
|
||
queue = [];
|
||
queue.push(root);
|
||
while (queue.length) {
|
||
// 每一层节点个数;
|
||
let lengthLevel = queue.length,
|
||
len = queue.length,
|
||
// sum记录每一层的和;
|
||
sum = 0;
|
||
while (lengthLevel--) {
|
||
const node = queue.shift();
|
||
sum += node.val;
|
||
// 队列存放下一层节点
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
// 求平均值
|
||
res.push(sum / len);
|
||
}
|
||
return res;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function averageOfLevels(root: TreeNode | null): number[] {
|
||
let helperQueue: TreeNode[] = [];
|
||
let resArr: number[] = [];
|
||
let total: number = 0;
|
||
let tempNode: TreeNode;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
let length = helperQueue.length;
|
||
for (let i = 0; i < length; i++) {
|
||
tempNode = helperQueue.shift()!;
|
||
total += tempNode.val;
|
||
if (tempNode.left) helperQueue.push(tempNode.left);
|
||
if (tempNode.right) helperQueue.push(tempNode.right);
|
||
}
|
||
resArr.push(total / length);
|
||
total = 0;
|
||
}
|
||
return resArr;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func averageOfLevels(_ root: TreeNode?) -> [Double] {
|
||
// 表示一层
|
||
var queue = [TreeNode]()
|
||
if let node = root { queue.append(node) }
|
||
var result = [Double]()
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var sum = 0
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
sum += node.val
|
||
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node) }
|
||
}
|
||
result.append(Double(sum) / Double(count))
|
||
}
|
||
|
||
return result
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 637.二叉树的层平均值
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def averageOfLevels(root: TreeNode): Array[Double] = {
|
||
val res = mutable.ArrayBuffer[Double]()
|
||
val queue = mutable.Queue[TreeNode]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
var sum = 0.0
|
||
var len = queue.size
|
||
for (i <- 0 until len) {
|
||
var curNode = queue.dequeue()
|
||
sum += curNode.value // 累加该层的值
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
res.append(sum / len) // 平均值即为sum/len
|
||
}
|
||
res.toArray // 最后需要转换为Array,return关键字可以省略
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn average_of_levels(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<f64> {
|
||
let mut res = vec![];
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
let len = queue.len();
|
||
let mut sum = 0;
|
||
for _ in 0..len {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
sum += node.borrow().val;
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
res.push((sum as f64) / len as f64);
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
|
||
#### C#:
|
||
|
||
```C# 二叉树的层平均值
|
||
public class Solution {
|
||
public IList<double> AverageOfLevels(TreeNode root) {
|
||
var result= new List<double>();
|
||
Queue<TreeNode> queue = new();
|
||
if(root !=null) queue.Enqueue(root);
|
||
|
||
while (queue.Count > 0)
|
||
{
|
||
int count = queue.Count;
|
||
double value=0;
|
||
for (int i = 0; i < count; i++)
|
||
{
|
||
var curentNode=queue.Dequeue();
|
||
value += curentNode.val;
|
||
if (curentNode.left!=null) queue.Enqueue(curentNode.left);
|
||
if (curentNode.right!=null) queue.Enqueue(curentNode.right);
|
||
}
|
||
result.Add(value/count);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
}
|
||
|
||
```
|
||
|
||
## 429.N叉树的层序遍历
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/n-ary-tree-level-order-traversal/)
|
||
|
||
给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。
|
||
|
||
例如,给定一个 3叉树 :
|
||
|
||

|
||
|
||
返回其层序遍历:
|
||
|
||
[
|
||
[1],
|
||
[3,2,4],
|
||
[5,6]
|
||
]
|
||
|
||
### 思路
|
||
|
||
这道题依旧是模板题,只不过一个节点有多个孩子了
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<vector<int>> levelOrder(Node* root) {
|
||
queue<Node*> que;
|
||
if (root != NULL) que.push(root);
|
||
vector<vector<int>> result;
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
vector<int> vec;
|
||
for (int i = 0; i < size; i++) {
|
||
Node* node = que.front();
|
||
que.pop();
|
||
vec.push_back(node->val);
|
||
for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
|
||
if (node->children[i]) que.push(node->children[i]);
|
||
}
|
||
}
|
||
result.push_back(vec);
|
||
}
|
||
return result;
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
"""
|
||
# Definition for a Node.
|
||
class Node:
|
||
def __init__(self, val=None, children=None):
|
||
self.val = val
|
||
self.children = children
|
||
"""
|
||
|
||
class Solution:
|
||
def levelOrder(self, root: 'Node') -> List[List[int]]:
|
||
if not root:
|
||
return []
|
||
|
||
result = []
|
||
queue = collections.deque([root])
|
||
|
||
while queue:
|
||
level_size = len(queue)
|
||
level = []
|
||
|
||
for _ in range(level_size):
|
||
node = queue.popleft()
|
||
level.append(node.val)
|
||
|
||
for child in node.children:
|
||
queue.append(child)
|
||
|
||
result.append(level)
|
||
|
||
return result
|
||
```
|
||
|
||
```python
|
||
# LeetCode 429. N-ary Tree Level Order Traversal
|
||
# 递归法
|
||
class Solution:
|
||
def levelOrder(self, root: 'Node') -> List[List[int]]:
|
||
if not root: return []
|
||
result=[]
|
||
def traversal(root,depth):
|
||
if len(result)==depth:result.append([])
|
||
result[depth].append(root.val)
|
||
if root.children:
|
||
for i in range(len(root.children)):traversal(root.children[i],depth+1)
|
||
|
||
traversal(root,0)
|
||
return result
|
||
```
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
// 429. N 叉树的层序遍历
|
||
public class N0429 {
|
||
/**
|
||
* 解法1:队列,迭代。
|
||
*/
|
||
public List<List<Integer>> levelOrder(Node root) {
|
||
List<List<Integer>> list = new ArrayList<>();
|
||
Deque<Node> que = new LinkedList<>();
|
||
|
||
if (root == null) {
|
||
return list;
|
||
}
|
||
|
||
que.offerLast(root);
|
||
while (!que.isEmpty()) {
|
||
int levelSize = que.size();
|
||
List<Integer> levelList = new ArrayList<>();
|
||
|
||
for (int i = 0; i < levelSize; i++) {
|
||
Node poll = que.pollFirst();
|
||
|
||
levelList.add(poll.val);
|
||
|
||
List<Node> children = poll.children;
|
||
if (children == null || children.size() == 0) {
|
||
continue;
|
||
}
|
||
for (Node child : children) {
|
||
if (child != null) {
|
||
que.offerLast(child);
|
||
}
|
||
}
|
||
}
|
||
list.add(levelList);
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
class Node {
|
||
public int val;
|
||
public List<Node> children;
|
||
|
||
public Node() {}
|
||
|
||
public Node(int _val) {
|
||
val = _val;
|
||
}
|
||
|
||
public Node(int _val, List<Node> _children) {
|
||
val = _val;
|
||
children = _children;
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
429. N 叉树的层序遍历
|
||
*/
|
||
|
||
func levelOrder(root *Node) [][]int {
|
||
queue := list.New()
|
||
res := [][]int{} //结果集
|
||
if root == nil{
|
||
return res
|
||
}
|
||
queue.PushBack(root)
|
||
for queue.Len() > 0 {
|
||
length := queue.Len() //记录当前层的数量
|
||
var tmp []int
|
||
for T := 0; T < length; T++ { //该层的每个元素:一添加到该层的结果集中;二找到该元素的下层元素加入到队列中,方便下次使用
|
||
myNode := queue.Remove(queue.Front()).(*Node)
|
||
tmp = append(tmp, myNode.Val)
|
||
for i := 0; i < len(myNode.Children); i++ {
|
||
queue.PushBack(myNode.Children[i])
|
||
}
|
||
}
|
||
res = append(res, tmp)
|
||
}
|
||
|
||
return res
|
||
}
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func levelOrder(root *Node) [][]int {
|
||
res := make([][]int, 0)
|
||
if root == nil {
|
||
return res
|
||
}
|
||
queue := make([]*Node, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
level := make([]int, 0)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
level = append(level, node.Val)
|
||
if len(node.Children) > 0 {
|
||
queue = append(queue, node.Children...)
|
||
}
|
||
}
|
||
res = append(res, level)
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```JavaScript
|
||
var levelOrder = function(root) {
|
||
//每一层可能有2个以上,所以不再使用node.left node.right
|
||
let res = [], queue = [];
|
||
queue.push(root);
|
||
|
||
while(queue.length && root!==null) {
|
||
//记录每一层节点个数还是和二叉树一致
|
||
let length = queue.length;
|
||
//存放每层节点 也和二叉树一致
|
||
let curLevel = [];
|
||
while(length--) {
|
||
let node = queue.shift();
|
||
curLevel.push(node.val);
|
||
|
||
//这里不再是 ndoe.left node.right 而是循坏node.children
|
||
for(let item of node.children){
|
||
item && queue.push(item);
|
||
}
|
||
}
|
||
res.push(curLevel);
|
||
}
|
||
|
||
return res;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function levelOrder(root: Node | null): number[][] {
|
||
let helperQueue: Node[] = [];
|
||
let resArr: number[][] = [];
|
||
let tempArr: number[] = [];
|
||
if (root !== null) helperQueue.push(root);
|
||
let curNode: Node;
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
curNode = helperQueue.shift()!;
|
||
tempArr.push(curNode.val);
|
||
helperQueue.push(...curNode.children);
|
||
}
|
||
resArr.push(tempArr);
|
||
tempArr = [];
|
||
}
|
||
return resArr;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func levelOrder(_ root: Node?) -> [[Int]] {
|
||
// 表示一层
|
||
var queue = [Node]()
|
||
if let node = root { queue.append(node) }
|
||
var result = [[Int]]()
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var subarray = [Int]()
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
subarray.append(node.val)
|
||
// 下一层
|
||
for node in node.children { queue.append(node) }
|
||
}
|
||
result.append(subarray)
|
||
}
|
||
|
||
return result
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 429.N叉树的层序遍历
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def levelOrder(root: Node): List[List[Int]] = {
|
||
val res = mutable.ListBuffer[List[Int]]()
|
||
if (root == null) return res.toList
|
||
val queue = mutable.Queue[Node]()
|
||
queue.enqueue(root) // 根节点入队
|
||
while (!queue.isEmpty) {
|
||
val tmp = mutable.ListBuffer[Int]() // 存储每层节点
|
||
val len = queue.size
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
tmp.append(curNode.value) // 将该节点的值加入tmp
|
||
// 循环遍历该节点的子节点,加入队列
|
||
for (child <- curNode.children) {
|
||
queue.enqueue(child)
|
||
}
|
||
}
|
||
res.append(tmp.toList) // 将该层的节点放到结果集
|
||
}
|
||
res.toList
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
pub struct Solution;
|
||
#[derive(Debug, PartialEq, Eq)]
|
||
pub struct Node {
|
||
pub val: i32,
|
||
pub children: Vec<Option<Rc<RefCell<Node>>>>,
|
||
}
|
||
|
||
impl Node {
|
||
#[inline]
|
||
pub fn new(val: i32) -> Node {
|
||
Node {
|
||
val,
|
||
children: vec![],
|
||
}
|
||
}
|
||
}
|
||
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn level_order(root: Option<Rc<RefCell<Node>>>) -> Vec<Vec<i32>> {
|
||
let mut res = vec![];
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
let mut temp = vec![];
|
||
for _ in 0..queue.len() {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
temp.push(node.borrow().val);
|
||
if !node.borrow().children.is_empty() {
|
||
for n in node.borrow().children.clone() {
|
||
queue.push_back(n);
|
||
}
|
||
}
|
||
}
|
||
res.push(temp)
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
|
||
## 515.在每个树行中找最大值
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/find-largest-value-in-each-tree-row/)
|
||
|
||
您需要在二叉树的每一行中找到最大的值。
|
||
|
||

|
||
|
||
### 思路
|
||
|
||
层序遍历,取每一层的最大值
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<int> largestValues(TreeNode* root) {
|
||
queue<TreeNode*> que;
|
||
if (root != NULL) que.push(root);
|
||
vector<int> result;
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
int maxValue = INT_MIN; // 取每一层的最大值
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
maxValue = node->val > maxValue ? node->val : maxValue;
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
result.push_back(maxValue); // 把最大值放进数组
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def largestValues(self, root: TreeNode) -> List[int]:
|
||
if not root:
|
||
return []
|
||
|
||
result = []
|
||
queue = collections.deque([root])
|
||
|
||
while queue:
|
||
level_size = len(queue)
|
||
max_val = float('-inf')
|
||
|
||
for _ in range(level_size):
|
||
node = queue.popleft()
|
||
max_val = max(max_val, node.val)
|
||
|
||
if node.left:
|
||
queue.append(node.left)
|
||
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
result.append(max_val)
|
||
|
||
return result
|
||
```
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
class Solution {
|
||
public List<Integer> largestValues(TreeNode root) {
|
||
if(root == null){
|
||
return Collections.emptyList();
|
||
}
|
||
List<Integer> result = new ArrayList();
|
||
Queue<TreeNode> queue = new LinkedList();
|
||
queue.offer(root);
|
||
while(!queue.isEmpty()){
|
||
int max = Integer.MIN_VALUE;
|
||
for(int i = queue.size(); i > 0; i--){
|
||
TreeNode node = queue.poll();
|
||
max = Math.max(max, node.val);
|
||
if(node.left != null) queue.offer(node.left);
|
||
if(node.right != null) queue.offer(node.right);
|
||
}
|
||
result.add(max);
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
515. 在每个树行中找最大值
|
||
*/
|
||
func largestValues(root *TreeNode) []int {
|
||
if root == nil {
|
||
//防止为空
|
||
return nil
|
||
}
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
ans := make([]int, 0)
|
||
temp := math.MinInt64
|
||
// 层序遍历
|
||
for queue.Len() > 0 {
|
||
//保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
|
||
length := queue.Len()
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode)//出队列
|
||
// 比较当前层中的最大值和新遍历的元素大小,取两者中大值
|
||
temp = max(temp, node.Val)
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
}
|
||
ans = append(ans, temp)
|
||
temp = math.MinInt64
|
||
}
|
||
return ans
|
||
}
|
||
|
||
func max(x, y int) int {
|
||
if x > y {
|
||
return x
|
||
}
|
||
return y
|
||
}
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func largestValues(root *TreeNode) []int {
|
||
res := make([]int, 0)
|
||
if root == nil {
|
||
return res
|
||
}
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
maxValue := math.MinInt64
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
if node.Val > maxValue {
|
||
maxValue = node.Val
|
||
}
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
res = append(res, maxValue)
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
var largestValues = function (root) {
|
||
let res = [],
|
||
queue = [];
|
||
queue.push(root);
|
||
if (root === null) {
|
||
return res;
|
||
}
|
||
while (queue.length) {
|
||
let lengthLevel = queue.length,
|
||
// 初始值设为负无穷大
|
||
max = -Infinity;
|
||
while (lengthLevel--) {
|
||
const node = queue.shift();
|
||
// 在当前层中找到最大值
|
||
max = Math.max(max, node.val);
|
||
// 找到下一层的节点
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
res.push(max);
|
||
}
|
||
return res;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function largestValues(root: TreeNode | null): number[] {
|
||
let helperQueue: TreeNode[] = [];
|
||
let resArr: number[] = [];
|
||
let tempNode: TreeNode;
|
||
let max: number = 0;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
tempNode = helperQueue.shift()!;
|
||
if (i === 0) {
|
||
max = tempNode.val;
|
||
} else {
|
||
max = max > tempNode.val ? max : tempNode.val;
|
||
}
|
||
if (tempNode.left) helperQueue.push(tempNode.left);
|
||
if (tempNode.right) helperQueue.push(tempNode.right);
|
||
}
|
||
resArr.push(max);
|
||
}
|
||
return resArr;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func largestValues(_ root: TreeNode?) -> [Int] {
|
||
// 表示一层
|
||
var queue = [TreeNode]()
|
||
if let node = root { queue.append(node) }
|
||
var result = [Int]()
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var max = queue[0].val
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
if node.val > max { max = node.val }
|
||
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node) }
|
||
}
|
||
result.append(max)
|
||
}
|
||
|
||
return result
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 515.在每个树行中找最大值
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def largestValues(root: TreeNode): List[Int] = {
|
||
val res = mutable.ListBuffer[Int]()
|
||
if (root == null) return res.toList
|
||
val queue = mutable.Queue[TreeNode]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
var max = Int.MinValue // 初始化max为系统最小值
|
||
val len = queue.size
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
max = math.max(max, curNode.value) // 对比求解最大值
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
res.append(max) // 将最大值放入结果集
|
||
}
|
||
res.toList
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn largest_values(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
||
let mut res = vec![];
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
let mut max = i32::MIN;
|
||
for _ in 0..queue.len() {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
max = max.max(node.borrow().val);
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
res.push(max);
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
|
||
## 116.填充每个节点的下一个右侧节点指针
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node/)
|
||
|
||
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
|
||
|
||
```cpp
|
||
struct Node {
|
||
int val;
|
||
Node *left;
|
||
Node *right;
|
||
Node *next;
|
||
}
|
||
```
|
||
|
||
|
||
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
|
||
|
||
初始状态下,所有 next 指针都被设置为 NULL。
|
||
|
||

|
||
|
||
### 思路
|
||
|
||
本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
Node* connect(Node* root) {
|
||
queue<Node*> que;
|
||
if (root != NULL) que.push(root);
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
// vector<int> vec;
|
||
Node* nodePre;
|
||
Node* node;
|
||
for (int i = 0; i < size; i++) {
|
||
if (i == 0) {
|
||
nodePre = que.front(); // 取出一层的头结点
|
||
que.pop();
|
||
node = nodePre;
|
||
} else {
|
||
node = que.front();
|
||
que.pop();
|
||
nodePre->next = node; // 本层前一个节点next指向本节点
|
||
nodePre = nodePre->next;
|
||
}
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
nodePre->next = NULL; // 本层最后一个节点指向NULL
|
||
}
|
||
return root;
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
class Solution {
|
||
public Node connect(Node root) {
|
||
Queue<Node> tmpQueue = new LinkedList<Node>();
|
||
if (root != null) tmpQueue.add(root);
|
||
|
||
while (tmpQueue.size() != 0){
|
||
int size = tmpQueue.size();
|
||
|
||
Node cur = tmpQueue.poll();
|
||
if (cur.left != null) tmpQueue.add(cur.left);
|
||
if (cur.right != null) tmpQueue.add(cur.right);
|
||
|
||
for (int index = 1; index < size; index++){
|
||
Node next = tmpQueue.poll();
|
||
if (next.left != null) tmpQueue.add(next.left);
|
||
if (next.right != null) tmpQueue.add(next.right);
|
||
|
||
cur.next = next;
|
||
cur = next;
|
||
}
|
||
}
|
||
|
||
return root;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
"""
|
||
# Definition for a Node.
|
||
class Node:
|
||
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
|
||
self.val = val
|
||
self.left = left
|
||
self.right = right
|
||
self.next = next
|
||
"""
|
||
class Solution:
|
||
def connect(self, root: 'Node') -> 'Node':
|
||
if not root:
|
||
return root
|
||
|
||
queue = collections.deque([root])
|
||
|
||
while queue:
|
||
level_size = len(queue)
|
||
prev = None
|
||
|
||
for i in range(level_size):
|
||
node = queue.popleft()
|
||
|
||
if prev:
|
||
prev.next = node
|
||
|
||
prev = node
|
||
|
||
if node.left:
|
||
queue.append(node.left)
|
||
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
return root
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
116. 填充每个节点的下一个右侧节点指针
|
||
117. 填充每个节点的下一个右侧节点指针 II
|
||
*/
|
||
|
||
func connect(root *Node) *Node {
|
||
if root == nil { //防止为空
|
||
return root
|
||
}
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
tmpArr := make([]*Node, 0)
|
||
for queue.Len() > 0 {
|
||
length := queue.Len() //保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*Node) //出队列
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
tmpArr = append(tmpArr, node) //将值加入本层切片中
|
||
}
|
||
if len(tmpArr) > 1 {
|
||
// 遍历每层元素,指定next
|
||
for i := 0; i < len(tmpArr)-1; i++ {
|
||
tmpArr[i].Next = tmpArr[i+1]
|
||
}
|
||
}
|
||
tmpArr = []*Node{} //清空层的数据
|
||
}
|
||
return root
|
||
}
|
||
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func connect(root *Node) *Node {
|
||
if root == nil {
|
||
return root
|
||
}
|
||
queue := make([]*Node, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[i]
|
||
if i != size - 1 {
|
||
queue[i].Next = queue[i+1]
|
||
}
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
queue = queue[size:]
|
||
}
|
||
return root
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
/**
|
||
* // Definition for a Node.
|
||
* function Node(val, left, right, next) {
|
||
* this.val = val === undefined ? null : val;
|
||
* this.left = left === undefined ? null : left;
|
||
* this.right = right === undefined ? null : right;
|
||
* this.next = next === undefined ? null : next;
|
||
* };
|
||
*/
|
||
|
||
/**
|
||
* @param {Node} root
|
||
* @return {Node}
|
||
*/
|
||
var connect = function(root) {
|
||
if (root === null) return root;
|
||
let queue = [root];
|
||
while (queue.length) {
|
||
let n = queue.length;
|
||
for (let i = 0; i < n; i++) {
|
||
let node = queue.shift();
|
||
if (i < n-1) {
|
||
node.next = queue[0];
|
||
}
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
}
|
||
return root;
|
||
};
|
||
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function connect(root: Node | null): Node | null {
|
||
let helperQueue: Node[] = [];
|
||
let preNode: Node, curNode: Node;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
if (i === 0) {
|
||
preNode = helperQueue.shift()!;
|
||
} else {
|
||
curNode = helperQueue.shift()!;
|
||
preNode.next = curNode;
|
||
preNode = curNode;
|
||
}
|
||
if (preNode.left) helperQueue.push(preNode.left);
|
||
if (preNode.right) helperQueue.push(preNode.right);
|
||
}
|
||
preNode.next = null;
|
||
}
|
||
return root;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func connect(_ root: Node?) -> Node? {
|
||
// 表示一层
|
||
var queue = [Node]()
|
||
if let node = root { queue.append(node) }
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var current, previous: Node!
|
||
for i in 0 ..< count {
|
||
// 当前层
|
||
if i == 0 {
|
||
previous = queue.removeFirst()
|
||
current = previous
|
||
} else {
|
||
current = queue.removeFirst()
|
||
previous.next = current
|
||
previous = current
|
||
}
|
||
|
||
// 下一层
|
||
if let node = current.left { queue.append(node) }
|
||
if let node = current.right { queue.append(node) }
|
||
}
|
||
previous.next = nil
|
||
}
|
||
|
||
return root
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 116.填充每个节点的下一个右侧节点指针
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
|
||
def connect(root: Node): Node = {
|
||
if (root == null) return root
|
||
val queue = mutable.Queue[Node]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
val len = queue.size
|
||
val tmp = mutable.ListBuffer[Node]()
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
tmp.append(curNode)
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
// 处理next指针
|
||
for (i <- 0 until tmp.size - 1) {
|
||
tmp(i).next = tmp(i + 1)
|
||
}
|
||
tmp(tmp.size-1).next = null
|
||
}
|
||
root
|
||
}
|
||
}
|
||
```
|
||
|
||
## 117.填充每个节点的下一个右侧节点指针II
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node-ii/)
|
||
|
||
### 思路
|
||
|
||
这道题目说是二叉树,但116题目说是完整二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道
|
||
|
||
C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
Node* connect(Node* root) {
|
||
queue<Node*> que;
|
||
if (root != NULL) que.push(root);
|
||
while (!que.empty()) {
|
||
int size = que.size();
|
||
vector<int> vec;
|
||
Node* nodePre;
|
||
Node* node;
|
||
for (int i = 0; i < size; i++) {
|
||
if (i == 0) {
|
||
nodePre = que.front(); // 取出一层的头结点
|
||
que.pop();
|
||
node = nodePre;
|
||
} else {
|
||
node = que.front();
|
||
que.pop();
|
||
nodePre->next = node; // 本层前一个节点next指向本节点
|
||
nodePre = nodePre->next;
|
||
}
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
nodePre->next = NULL; // 本层最后一个节点指向NULL
|
||
}
|
||
return root;
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
// 二叉树之层次遍历
|
||
class Solution {
|
||
public Node connect(Node root) {
|
||
Queue<Node> queue = new LinkedList<>();
|
||
if (root != null) {
|
||
queue.add(root);
|
||
}
|
||
while (!queue.isEmpty()) {
|
||
int size = queue.size();
|
||
Node node = null;
|
||
Node nodePre = null;
|
||
|
||
for (int i = 0; i < size; i++) {
|
||
if (i == 0) {
|
||
nodePre = queue.poll(); // 取出本层头一个节点
|
||
node = nodePre;
|
||
} else {
|
||
node = queue.poll();
|
||
nodePre.next = node; // 本层前一个节点 next 指向当前节点
|
||
nodePre = nodePre.next;
|
||
}
|
||
if (node.left != null) {
|
||
queue.add(node.left);
|
||
}
|
||
if (node.right != null) {
|
||
queue.add(node.right);
|
||
}
|
||
}
|
||
nodePre.next = null; // 本层最后一个节点 next 指向 null
|
||
}
|
||
return root;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Python:
|
||
|
||
```python
|
||
# 层序遍历解法
|
||
"""
|
||
# Definition for a Node.
|
||
class Node:
|
||
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
|
||
self.val = val
|
||
self.left = left
|
||
self.right = right
|
||
self.next = next
|
||
"""
|
||
|
||
class Solution:
|
||
def connect(self, root: 'Node') -> 'Node':
|
||
if not root:
|
||
return root
|
||
|
||
queue = collections.deque([root])
|
||
|
||
while queue:
|
||
level_size = len(queue)
|
||
prev = None
|
||
|
||
for i in range(level_size):
|
||
node = queue.popleft()
|
||
|
||
if prev:
|
||
prev.next = node
|
||
|
||
prev = node
|
||
|
||
if node.left:
|
||
queue.append(node.left)
|
||
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
return root
|
||
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```GO
|
||
/**
|
||
116. 填充每个节点的下一个右侧节点指针
|
||
117. 填充每个节点的下一个右侧节点指针 II
|
||
*/
|
||
|
||
func connect(root *Node) *Node {
|
||
if root == nil { //防止为空
|
||
return root
|
||
}
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
tmpArr := make([]*Node, 0)
|
||
for queue.Len() > 0 {
|
||
length := queue.Len() //保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*Node) //出队列
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
tmpArr = append(tmpArr, node) //将值加入本层切片中
|
||
}
|
||
if len(tmpArr) > 1 {
|
||
// 遍历每层元素,指定next
|
||
for i := 0; i < len(tmpArr)-1; i++ {
|
||
tmpArr[i].Next = tmpArr[i+1]
|
||
}
|
||
}
|
||
tmpArr = []*Node{} //清空层的数据
|
||
}
|
||
return root
|
||
}
|
||
```
|
||
|
||
```GO
|
||
// 使用切片作为队列
|
||
func connect(root *Node) *Node {
|
||
if root == nil {
|
||
return root
|
||
}
|
||
queue := make([]*Node, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[i]
|
||
if i != size - 1 {
|
||
queue[i].Next = queue[i+1]
|
||
}
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
queue = queue[size:]
|
||
}
|
||
return root
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
/**
|
||
* // Definition for a Node.
|
||
* function Node(val, left, right, next) {
|
||
* this.val = val === undefined ? null : val;
|
||
* this.left = left === undefined ? null : left;
|
||
* this.right = right === undefined ? null : right;
|
||
* this.next = next === undefined ? null : next;
|
||
* };
|
||
*/
|
||
|
||
/**
|
||
* @param {Node} root
|
||
* @return {Node}
|
||
*/
|
||
var connect = function(root) {
|
||
if (root === null) {
|
||
return null;
|
||
}
|
||
let queue = [root];
|
||
while (queue.length > 0) {
|
||
let n = queue.length;
|
||
for (let i=0; i<n; i++) {
|
||
let node = queue.shift();
|
||
if (i < n-1) node.next = queue[0];
|
||
if (node.left != null) queue.push(node.left);
|
||
if (node.right != null) queue.push(node.right);
|
||
}
|
||
}
|
||
return root;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function connect(root: Node | null): Node | null {
|
||
let helperQueue: Node[] = [];
|
||
let preNode: Node, curNode: Node;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
if (i === 0) {
|
||
preNode = helperQueue.shift()!;
|
||
} else {
|
||
curNode = helperQueue.shift()!;
|
||
preNode.next = curNode;
|
||
preNode = curNode;
|
||
}
|
||
if (preNode.left) helperQueue.push(preNode.left);
|
||
if (preNode.right) helperQueue.push(preNode.right);
|
||
}
|
||
preNode.next = null;
|
||
}
|
||
return root;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func connect(_ root: Node?) -> Node? {
|
||
// 表示一层
|
||
var queue = [Node]()
|
||
if let node = root { queue.append(node) }
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
var current, previous: Node!
|
||
for i in 0 ..< count {
|
||
// 当前层
|
||
if i == 0 {
|
||
previous = queue.removeFirst()
|
||
current = previous
|
||
} else {
|
||
current = queue.removeFirst()
|
||
previous.next = current
|
||
previous = current
|
||
}
|
||
|
||
// 下一层
|
||
if let node = current.left { queue.append(node) }
|
||
if let node = current.right { queue.append(node) }
|
||
}
|
||
previous.next = nil
|
||
}
|
||
|
||
return root
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 117.填充每个节点的下一个右侧节点指针II
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
|
||
def connect(root: Node): Node = {
|
||
if (root == null) return root
|
||
val queue = mutable.Queue[Node]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
val len = queue.size
|
||
val tmp = mutable.ListBuffer[Node]()
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
tmp.append(curNode)
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
// 处理next指针
|
||
for (i <- 0 until tmp.size - 1) {
|
||
tmp(i).next = tmp(i + 1)
|
||
}
|
||
tmp(tmp.size-1).next = null
|
||
}
|
||
root
|
||
}
|
||
}
|
||
```
|
||
|
||
## 104.二叉树的最大深度
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/maximum-depth-of-binary-tree/)
|
||
|
||
给定一个二叉树,找出其最大深度。
|
||
|
||
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
|
||
|
||
说明: 叶子节点是指没有子节点的节点。
|
||
|
||
示例:
|
||
|
||
给定二叉树 [3,9,20,null,null,15,7],
|
||
|
||

|
||
|
||
返回它的最大深度 3 。
|
||
|
||
### 思路
|
||
|
||
使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数,和层序遍历的方式极其吻合。
|
||
|
||
在二叉树中,一层一层的来遍历二叉树,记录一下遍历的层数就是二叉树的深度,如图所示:
|
||
|
||

|
||
|
||
所以这道题的迭代法就是一道模板题,可以使用二叉树层序遍历的模板来解决的。
|
||
|
||
C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int maxDepth(TreeNode* root) {
|
||
if (root == NULL) return 0;
|
||
int depth = 0;
|
||
queue<TreeNode*> que;
|
||
que.push(root);
|
||
while(!que.empty()) {
|
||
int size = que.size();
|
||
depth++; // 记录深度
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
}
|
||
}
|
||
return depth;
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Java:
|
||
|
||
```Java
|
||
class Solution {
|
||
public int maxDepth(TreeNode root) {
|
||
if (root == null) return 0;
|
||
Queue<TreeNode> que = new LinkedList<>();
|
||
que.offer(root);
|
||
int depth = 0;
|
||
while (!que.isEmpty())
|
||
{
|
||
int len = que.size();
|
||
while (len > 0)
|
||
{
|
||
TreeNode node = que.poll();
|
||
if (node.left != null) que.offer(node.left);
|
||
if (node.right != null) que.offer(node.right);
|
||
len--;
|
||
}
|
||
depth++;
|
||
}
|
||
return depth;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Python:
|
||
|
||
```python 3
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def maxDepth(self, root: TreeNode) -> int:
|
||
if not root:
|
||
return 0
|
||
|
||
depth = 0
|
||
queue = collections.deque([root])
|
||
|
||
while queue:
|
||
depth += 1
|
||
for _ in range(len(queue)):
|
||
node = queue.popleft()
|
||
if node.left:
|
||
queue.append(node.left)
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
return depth
|
||
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```go
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* type TreeNode struct {
|
||
* Val int
|
||
* Left *TreeNode
|
||
* Right *TreeNode
|
||
* }
|
||
*/
|
||
func maxDepth(root *TreeNode) int {
|
||
ans := 0
|
||
if root == nil {
|
||
return 0
|
||
}
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
for queue.Len() > 0 {
|
||
length := queue.Len()
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
}
|
||
ans++//记录深度,其他的是层序遍历的板子
|
||
}
|
||
return ans
|
||
}
|
||
```
|
||
|
||
```go
|
||
// 使用切片作为队列
|
||
func maxDepth(root *TreeNode) int {
|
||
if root == nil {
|
||
return 0
|
||
}
|
||
depth := 0
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
}
|
||
depth++
|
||
}
|
||
return depth
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val, left, right) {
|
||
* this.val = (val===undefined ? 0 : val)
|
||
* this.left = (left===undefined ? null : left)
|
||
* this.right = (right===undefined ? null : right)
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {number}
|
||
*/
|
||
var maxDepth = function (root) {
|
||
// 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
|
||
let max = 0,
|
||
queue = [root];
|
||
if (root === null) {
|
||
return max;
|
||
}
|
||
while (queue.length) {
|
||
max++;
|
||
let length = queue.length;
|
||
while (length--) {
|
||
let node = queue.shift();
|
||
node.left && queue.push(node.left);
|
||
node.right && queue.push(node.right);
|
||
}
|
||
}
|
||
return max;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function maxDepth(root: TreeNode | null): number {
|
||
let helperQueue: TreeNode[] = [];
|
||
let resDepth: number = 0;
|
||
let tempNode: TreeNode;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
resDepth++;
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
tempNode = helperQueue.shift()!;
|
||
if (tempNode.left) helperQueue.push(tempNode.left);
|
||
if (tempNode.right) helperQueue.push(tempNode.right);
|
||
}
|
||
}
|
||
return resDepth;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func maxDepth(_ root: TreeNode?) -> Int {
|
||
guard root != nil else { return 0 }
|
||
var depth = 0
|
||
var queue = [TreeNode]()
|
||
queue.append(root!)
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
depth += 1
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node) }
|
||
}
|
||
}
|
||
|
||
return depth
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 104.二叉树的最大深度
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def maxDepth(root: TreeNode): Int = {
|
||
if (root == null) return 0
|
||
val queue = mutable.Queue[TreeNode]()
|
||
queue.enqueue(root)
|
||
var depth = 0
|
||
while (!queue.isEmpty) {
|
||
val len = queue.length
|
||
depth += 1
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
}
|
||
}
|
||
depth
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
|
||
let mut queue = VecDeque::new();
|
||
let mut res = 0;
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
res += 1;
|
||
for _ in 0..queue.len() {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
|
||
## 111.二叉树的最小深度
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/minimum-depth-of-binary-tree/)
|
||
|
||
### 思路
|
||
|
||
相对于 104.二叉树的最大深度 ,本题还也可以使用层序遍历的方式来解决,思路是一样的。
|
||
|
||
**需要注意的是,只有当左右孩子都为空的时候,才说明遍历的最低点了。如果其中一个孩子为空则不是最低点**
|
||
|
||
代码如下:(详细注释)
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int minDepth(TreeNode* root) {
|
||
if (root == NULL) return 0;
|
||
int depth = 0;
|
||
queue<TreeNode*> que;
|
||
que.push(root);
|
||
while(!que.empty()) {
|
||
int size = que.size();
|
||
depth++; // 记录最小深度
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode* node = que.front();
|
||
que.pop();
|
||
if (node->left) que.push(node->left);
|
||
if (node->right) que.push(node->right);
|
||
if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
|
||
return depth;
|
||
}
|
||
}
|
||
}
|
||
return depth;
|
||
}
|
||
};
|
||
```
|
||
|
||
### 其他语言版本
|
||
|
||
#### Java:
|
||
|
||
```java
|
||
class Solution {
|
||
public int minDepth(TreeNode root){
|
||
if (root == null) {
|
||
return 0;
|
||
}
|
||
Queue<TreeNode> queue = new LinkedList<>();
|
||
queue.offer(root);
|
||
int depth = 0;
|
||
while (!queue.isEmpty()){
|
||
int size = queue.size();
|
||
depth++;
|
||
TreeNode cur = null;
|
||
for (int i = 0; i < size; i++) {
|
||
cur = queue.poll();
|
||
//如果当前节点的左右孩子都为空,直接返回最小深度
|
||
if (cur.left == null && cur.right == null){
|
||
return depth;
|
||
}
|
||
if (cur.left != null) queue.offer(cur.left);
|
||
if (cur.right != null) queue.offer(cur.right);
|
||
}
|
||
}
|
||
return depth;
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Python:
|
||
|
||
```python 3
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, val=0, left=None, right=None):
|
||
# self.val = val
|
||
# self.left = left
|
||
# self.right = right
|
||
class Solution:
|
||
def minDepth(self, root: TreeNode) -> int:
|
||
if not root:
|
||
return 0
|
||
depth = 0
|
||
queue = collections.deque([root])
|
||
|
||
while queue:
|
||
depth += 1
|
||
for _ in range(len(queue)):
|
||
node = queue.popleft()
|
||
|
||
if not node.left and not node.right:
|
||
return depth
|
||
|
||
if node.left:
|
||
queue.append(node.left)
|
||
|
||
if node.right:
|
||
queue.append(node.right)
|
||
|
||
return depth
|
||
```
|
||
|
||
#### Go:
|
||
|
||
```go
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* type TreeNode struct {
|
||
* Val int
|
||
* Left *TreeNode
|
||
* Right *TreeNode
|
||
* }
|
||
*/
|
||
func minDepth(root *TreeNode) int {
|
||
ans := 0
|
||
if root == nil {
|
||
return 0
|
||
}
|
||
queue := list.New()
|
||
queue.PushBack(root)
|
||
for queue.Len() > 0 {
|
||
length := queue.Len()
|
||
for i := 0; i < length; i++ {
|
||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||
if node.Left == nil && node.Right == nil { //当前节点没有左右节点,则代表此层是最小层
|
||
return ans+1 //返回当前层 ans代表是上一层
|
||
}
|
||
if node.Left != nil {
|
||
queue.PushBack(node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue.PushBack(node.Right)
|
||
}
|
||
}
|
||
ans++//记录层数
|
||
}
|
||
|
||
return ans
|
||
}
|
||
```
|
||
|
||
```go
|
||
// 使用切片作为队列
|
||
func minDepth(root *TreeNode) int {
|
||
if root == nil {
|
||
return 0
|
||
}
|
||
depth := 0
|
||
queue := make([]*TreeNode, 0)
|
||
queue = append(queue, root)
|
||
for len(queue) > 0 {
|
||
size := len(queue)
|
||
depth++
|
||
for i := 0; i < size; i++ {
|
||
node := queue[0]
|
||
queue = queue[1:]
|
||
if node.Left != nil {
|
||
queue = append(queue, node.Left)
|
||
}
|
||
if node.Right != nil {
|
||
queue = append(queue, node.Right)
|
||
}
|
||
if node.Left == nil && node.Right == nil {
|
||
return depth
|
||
}
|
||
}
|
||
}
|
||
return depth
|
||
}
|
||
```
|
||
|
||
#### JavaScript:
|
||
|
||
```javascript
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val, left, right) {
|
||
* this.val = (val===undefined ? 0 : val)
|
||
* this.left = (left===undefined ? null : left)
|
||
* this.right = (right===undefined ? null : right)
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {number}
|
||
*/
|
||
var minDepth = function(root) {
|
||
if (root === null) return 0;
|
||
let queue = [root];
|
||
let depth = 0;
|
||
while (queue.length) {
|
||
let n = queue.length;
|
||
depth++;
|
||
for (let i=0; i<n; i++) {
|
||
let node = queue.shift();
|
||
// 如果左右节点都是null(在遇见的第一个leaf节点上),则该节点深度最小
|
||
if (node.left === null && node.right === null) {
|
||
return depth;
|
||
}
|
||
node.left && queue.push(node.left);;
|
||
node.right && queue.push(node.right);
|
||
}
|
||
}
|
||
return depth;
|
||
};
|
||
```
|
||
|
||
#### TypeScript:
|
||
|
||
```typescript
|
||
function minDepth(root: TreeNode | null): number {
|
||
let helperQueue: TreeNode[] = [];
|
||
let resMin: number = 0;
|
||
let tempNode: TreeNode;
|
||
if (root !== null) helperQueue.push(root);
|
||
while (helperQueue.length > 0) {
|
||
resMin++;
|
||
for (let i = 0, length = helperQueue.length; i < length; i++) {
|
||
tempNode = helperQueue.shift()!;
|
||
if (tempNode.left === null && tempNode.right === null) return resMin;
|
||
if (tempNode.left !== null) helperQueue.push(tempNode.left);
|
||
if (tempNode.right !== null) helperQueue.push(tempNode.right);
|
||
}
|
||
}
|
||
return resMin;
|
||
};
|
||
```
|
||
|
||
#### Swift:
|
||
|
||
```swift
|
||
func minDepth(_ root: TreeNode?) -> Int {
|
||
guard root != nil else { return 0 }
|
||
var depth = 0
|
||
var queue = [root!]
|
||
while !queue.isEmpty {
|
||
let count = queue.count
|
||
depth += 1
|
||
for _ in 0 ..< count {
|
||
// 当前层
|
||
let node = queue.removeFirst()
|
||
if node.left == nil, node.right == nil { // 遇到叶子结点则返回
|
||
return depth
|
||
}
|
||
|
||
// 下一层
|
||
if let node = node.left { queue.append(node) }
|
||
if let node = node.right { queue.append(node) }
|
||
}
|
||
}
|
||
return depth
|
||
}
|
||
```
|
||
|
||
#### Scala:
|
||
|
||
```scala
|
||
// 111.二叉树的最小深度
|
||
object Solution {
|
||
import scala.collection.mutable
|
||
def minDepth(root: TreeNode): Int = {
|
||
if (root == null) return 0
|
||
var depth = 0
|
||
val queue = mutable.Queue[TreeNode]()
|
||
queue.enqueue(root)
|
||
while (!queue.isEmpty) {
|
||
depth += 1
|
||
val len = queue.size
|
||
for (i <- 0 until len) {
|
||
val curNode = queue.dequeue()
|
||
if (curNode.left != null) queue.enqueue(curNode.left)
|
||
if (curNode.right != null) queue.enqueue(curNode.right)
|
||
if (curNode.left == null && curNode.right == null) return depth
|
||
}
|
||
}
|
||
depth
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Rust:
|
||
|
||
```rust
|
||
use std::cell::RefCell;
|
||
use std::collections::VecDeque;
|
||
use std::rc::Rc;
|
||
impl Solution {
|
||
pub fn min_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
|
||
let mut res = 0;
|
||
let mut queue = VecDeque::new();
|
||
if root.is_some() {
|
||
queue.push_back(root);
|
||
}
|
||
while !queue.is_empty() {
|
||
res += 1;
|
||
for _ in 0..queue.len() {
|
||
let node = queue.pop_front().unwrap().unwrap();
|
||
if node.borrow().left.is_none() && node.borrow().right.is_none() {
|
||
return res;
|
||
}
|
||
if node.borrow().left.is_some() {
|
||
queue.push_back(node.borrow().left.clone());
|
||
}
|
||
if node.borrow().right.is_some() {
|
||
queue.push_back(node.borrow().right.clone());
|
||
}
|
||
}
|
||
}
|
||
res
|
||
}
|
||
}
|
||
```
|
||
|
||
## 总结
|
||
|
||
二叉树的层序遍历,**就是图论中的广度优先搜索在二叉树中的应用**,需要借助队列来实现(此时又发现队列的一个应用了)。
|
||
|
||
来吧,一口气打十个:
|
||
|
||
* [102.二叉树的层序遍历](https://leetcode.cn/problems/binary-tree-level-order-traversal/)
|
||
* [107.二叉树的层次遍历II](https://leetcode.cn/problems/binary-tree-level-order-traversal-ii/)
|
||
* [199.二叉树的右视图](https://leetcode.cn/problems/binary-tree-right-side-view/)
|
||
* [637.二叉树的层平均值](https://leetcode.cn/problems/binary-tree-right-side-view/)
|
||
* [429.N叉树的层序遍历](https://leetcode.cn/problems/n-ary-tree-level-order-traversal/)
|
||
* [515.在每个树行中找最大值](https://leetcode.cn/problems/find-largest-value-in-each-tree-row/)
|
||
* [116.填充每个节点的下一个右侧节点指针](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node/)
|
||
* [117.填充每个节点的下一个右侧节点指针II](https://leetcode.cn/problems/populating-next-right-pointers-in-each-node-ii/)
|
||
* [104.二叉树的最大深度](https://leetcode.cn/problems/maximum-depth-of-binary-tree/)
|
||
* [111.二叉树的最小深度](https://leetcode.cn/problems/minimum-depth-of-binary-tree/)
|
||
|
||
**致敬叶师傅!**
|
||
|
||
|