Files
leetcode-master/problems/0122.买卖股票的最佳时机II(动态规划).md
2025-05-19 17:11:04 +08:00

478 lines
16 KiB
Markdown
Executable File
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

* [做项目多个C++、Java、Go、测开、前端项目](https://www.programmercarl.com/other/kstar.html)
* [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html)
* [背八股40天挑战高频面试题](https://www.programmercarl.com/xunlian/bagu.html)
# 122.买卖股票的最佳时机II
[力扣题目链接](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/)
给定一个数组它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
* 示例 1:
* 输入: [7,1,5,3,6,4]
* 输出: 7
解释: 在第 2 天(股票价格 = 1的时候买入在第 3 天(股票价格 = 5的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后在第 4 天(股票价格 = 3的时候买入在第 5 天(股票价格 = 6的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
* 示例 2:
* 输入: [1,2,3,4,5]
* 输出: 4
解释: 在第 1 天(股票价格 = 1的时候买入在第 5 天 (股票价格 = 5的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
* 示例 3:
* 输入: [7,6,4,3,1]
* 输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
* 1 <= prices.length <= 3 * 10 ^ 4
* 0 <= prices[i] <= 10 ^ 4
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[动态规划,股票问题第二弹 | LeetCode122.买卖股票的最佳时机II](https://www.bilibili.com/video/BV1D24y1Q7Ls),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
## 思路
本题我们在讲解贪心专题的时候就已经讲解过了[贪心算法买卖股票的最佳时机II](https://programmercarl.com/0122.买卖股票的最佳时机II.html),只不过没有深入讲解动态规划的解法,那么这次我们再好好分析一下动规的解法。
本题和[121. 买卖股票的最佳时机](https://programmercarl.com/0121.买卖股票的最佳时机.html)的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)
**在动规五部曲中,这个区别主要是体现在递推公式上,其他都和[121. 买卖股票的最佳时机](https://programmercarl.com/0121.买卖股票的最佳时机.html)一样一样的**
所以我们重点讲一讲递推公式。
这里重申一下dp数组的含义
* dp[i][0] 表示第i天持有股票所得现金。
* dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0] 那么可以由两个状态推出来
* 第i-1天就持有股票那么就保持现状所得现金就是昨天持有股票的所得现金 即dp[i - 1][0]
* 第i天买入股票所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即dp[i - 1][1] - prices[i]
**注意这里和[121. 买卖股票的最佳时机](https://programmercarl.com/0121.买卖股票的最佳时机.html)唯一不同的地方就是推导dp[i][0]的时候第i天买入股票的情况**
在[121. 买卖股票的最佳时机](https://programmercarl.com/0121.买卖股票的最佳时机.html)中因为股票全程只能买卖一次所以如果买入股票那么第i天持有股票即dp[i][0]一定就是 -prices[i]。
而本题因为一只股票可以买卖多次所以当第i天买入股票的时候所持有的现金可能有之前买卖过的利润。
那么第i天持有股票即dp[i][0]如果是第i天买入股票所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即dp[i - 1][1] - prices[i]。
再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
* 第i-1天就不持有股票那么就保持现状所得现金就是昨天不持有股票的所得现金 即dp[i - 1][1]
* 第i天卖出股票所得现金就是按照今天股票价格卖出后所得现金即prices[i] + dp[i - 1][0]
**注意这里和[121. 买卖股票的最佳时机](https://programmercarl.com/0121.买卖股票的最佳时机.html)就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!**
代码如下注意代码中的注释标记了和121.买卖股票的最佳时机唯一不同的地方)
```CPP
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(len, vector<int>(2, 0));
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[len - 1][1];
}
};
```
* 时间复杂度O(n)
* 空间复杂度O(n)
大家可以本题和[121. 买卖股票的最佳时机](https://programmercarl.com/0121.买卖股票的最佳时机.html)的代码几乎一样,唯一的区别在:
```
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
```
**这正是因为本题的股票可以买卖多次!** 所以买入股票的时候可能会有之前买卖的利润即dp[i - 1][1]所以dp[i - 1][1] - prices[i]。
想到到这一点,对这两道题理解的就比较深刻了。
这里我依然给出滚动数组的版本C++代码如下:
```CPP
// 版本二
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
}
return dp[(len - 1) % 2][1];
}
};
```
* 时间复杂度O(n)
* 空间复杂度O(1)
## 其他语言版本
### Java
```java
// 动态规划
class Solution
// 实现1二维数组存储
// 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储
// 时间复杂度O(n)空间复杂度O(n)
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2]; // 创建二维数组存储状态
dp[0][0] = 0; // 初始状态
dp[0][1] = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]); // 第 i 天,没有股票
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]); // 第 i 天,持有股票
}
return dp[n - 1][0]; // 卖出股票收益高于持有股票收益,因此取[0]
}
}
```
```java
//DP using 2*2 Array (下方還有使用一維滾動數組的更優化版本)
class Solution {
public int maxProfit(int[] prices) {
int dp[][] = new int [2][2];
//dp[i][0]: holding the stock
//dp[i][1]: not holding the stock
dp[0][0] = - prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++){
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i]);
}
return dp[(prices.length - 1) % 2][1];
}
}
```
```java
// 优化空间
class Solution {
public int maxProfit(int[] prices) {
int[] dp = new int[2];
// 0表示持有1表示卖出
dp[0] = -prices[0];
dp[1] = 0;
for(int i = 1; i <= prices.length; i++){
// 前一天持有; 既然不限制交易次数,那么再次买股票时,要加上之前的收益
dp[0] = Math.max(dp[0], dp[1] - prices[i-1]);
// 前一天卖出; 或当天卖出,当天卖出,得先持有
dp[1] = Math.max(dp[1], dp[0] + prices[i-1]);
}
return dp[1];
}
}
```
### Python
> 版本一:
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp = [[0] * 2 for _ in range(length)]
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
return dp[-1][1]
```
> 版本二:
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp = [[0] * 2 for _ in range(2)] #注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i % 2][0] = max(dp[(i-1) % 2][0], dp[(i-1) % 2][1] - prices[i])
dp[i % 2][1] = max(dp[(i-1) % 2][1], dp[(i-1) % 2][0] + prices[i])
return dp[(length-1) % 2][1]
```
### Go
```go
// 买卖股票的最佳时机Ⅱ 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int) int {
dp := make([][]int, len(prices))
status := make([]int, len(prices) * 2)
for i := range dp {
dp[i] = status[:2]
status = status[2:]
}
dp[0][0] = -prices[0]
for i := 1; i < len(prices); i++ {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
}
return dp[len(prices) - 1][1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
```
```go
// 动态规划 版本二 滚动数组
func maxProfit(prices []int) int {
dp := [2][2]int{} // 注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] = -prices[0]
dp[0][1] = 0
for i := 1; i < len(prices); i++ {
dp[i%2][0] = max(dp[(i-1)%2][0], dp[(i - 1) % 2][1] - prices[i])
dp[i%2][1] = max(dp[(i-1)%2][1], dp[(i-1)%2][0] + prices[i])
}
return dp[(len(prices)-1)%2][1]
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
```
### JavaScript
```javascript
// 方法一动态规划dp 数组)
const maxProfit = (prices) => {
let dp = Array.from(Array(prices.length), () => Array(2).fill(0));
// dp[i][0] 表示第i天持有股票所得现金。
// dp[i][1] 表示第i天不持有股票所得最多现金
dp[0][0] = 0 - prices[0];
dp[0][1] = 0;
for(let i = 1; i < prices.length; i++) {
// 如果第i天持有股票即dp[i][0] 那么可以由两个状态推出来
// 第i-1天就持有股票那么就保持现状所得现金就是昨天持有股票的所得现金 即dp[i - 1][0]
// 第i天买入股票所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即dp[i - 1][1] - prices[i]
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i]);
// 在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
// 第i-1天就不持有股票那么就保持现状所得现金就是昨天不持有股票的所得现金 即dp[i - 1][1]
// 第i天卖出股票所得现金就是按照今天股票佳价格卖出后所得现金即prices[i] + dp[i - 1][0]
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
}
return dp[prices.length -1][1];
};
// 方法二:动态规划(滚动数组)
const maxProfit = (prices) => {
// 滚动数组
// have: 第i天持有股票最大收益; notHave: 第i天不持有股票最大收益
let n = prices.length,
have = -prices[0],
notHave = 0;
for (let i = 1; i < n; i++) {
have = Math.max(have, notHave - prices[i]);
notHave = Math.max(notHave, have + prices[i]);
}
// 最终手里不持有股票才能保证收益最大化
return notHave;
}
```
### TypeScript
> 动态规划
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 第i天持有股票
dp[i][1]: 第i天不持有股票
*/
const length: number = prices.length;
if (length === 0) return 0;
const dp: number[][] = new Array(length).fill(0).map(_ => []);
dp[0] = [-prices[0], 0];
for (let i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[length - 1][1];
};
```
> 贪心法
```typescript
function maxProfit(prices: number[]): number {
let resProfit: number = 0;
for (let i = 1, length = prices.length; i < length; i++) {
if (prices[i] > prices[i - 1]) {
resProfit += prices[i] - prices[i - 1];
}
}
return resProfit;
};
```
### C#
> 贪心法
```csharp
public class Solution
{
public int MaxProfit(int[] prices)
{
int res = 0;
for (int i = 1; i < prices.Length; i++)
res += Math.Max(0, prices[i] - prices[i-1]);
return res;
}
}
```
> 动态规划
```csharp
public class Solution
{
public int MaxProfit(int[] prices)
{
int[] dp = new int[2];
dp[0] = -prices[0];
for (int i = 1; i < prices.Length; i++)
{
dp[0] = dp[0]>dp[1] - prices[i]?dp[0]:dp[1] - prices[i];
dp[1] = dp[1] > dp[0] + prices[i] ? dp[1] : dp[0] + prices[i];
}
return dp[1];
}
}
```
### C:
> 动态规划
```c
#define max(a, b) ((a) > (b) ? (a) : (b))
int maxProfit(int* prices, int pricesSize){
int **dp = malloc(sizeof (int *) * pricesSize);
for (int i = 0; i < pricesSize; ++i) {
dp[i] = malloc(sizeof (int ) * 2);
}
// 0表示持有该股票所得最大1表示不持有所得最大
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < pricesSize; ++i) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[pricesSize - 1][1];
}
```
> 贪心
```c
int maxProfit(int* prices, int pricesSize) {
if(pricesSize == 0){
return 0;
}
int result = 0;
for(int i = 1; i < pricesSize; i++){
// 如果今天股票价格大于昨天,代表有利润
if(prices[i] > prices[i - 1]){
result += prices[i] - prices[i - 1];
}
}
return result;
}
```
### Rust:
> 贪心
```rust
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut result = 0;
for i in 1..prices.len() {
result += (prices[i] - prices[i - 1]).max(0);
}
result
}
}
```
>动态规划
```rust
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut dp = vec![vec![0; 2]; prices.len()];
dp[0][0] = -prices[0];
for i in 1..prices.len() {
dp[i][0] = dp[i - 1][0].max(dp[i - 1][1] - prices[i]);
dp[i][1] = dp[i - 1][1].max(dp[i - 1][0] + prices[i]);
}
dp[prices.len() - 1][1]
}
}
```
> 优化
```rust
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut dp = vec![-prices[0], 0];
for p in prices {
dp[0] = dp[0].max(dp[1] - p);
dp[1] = dp[1].max(dp[0] + p);
}
dp[1]
}
}
```