mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2026-02-02 18:39:09 +08:00
424 lines
12 KiB
Markdown
Executable File
424 lines
12 KiB
Markdown
Executable File
* [做项目(多个C++、Java、Go、测开、前端项目)](https://www.programmercarl.com/other/kstar.html)
|
||
* [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html)
|
||
* [背八股(40天挑战高频面试题)](https://www.programmercarl.com/xunlian/bagu.html)
|
||
|
||
# 122.买卖股票的最佳时机 II
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/)
|
||
|
||
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
|
||
|
||
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
|
||
|
||
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
|
||
|
||
示例 1:
|
||
|
||
- 输入: [7,1,5,3,6,4]
|
||
- 输出: 7
|
||
- 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
|
||
|
||
示例 2:
|
||
|
||
- 输入: [1,2,3,4,5]
|
||
- 输出: 4
|
||
- 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
|
||
|
||
示例 3:
|
||
|
||
- 输入: [7,6,4,3,1]
|
||
- 输出: 0
|
||
- 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
|
||
|
||
提示:
|
||
|
||
- 1 <= prices.length <= 3 \* 10 ^ 4
|
||
- 0 <= prices[i] <= 10 ^ 4
|
||
|
||
## 算法公开课
|
||
|
||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[贪心算法也能解决股票问题!LeetCode:122.买卖股票最佳时机 II](https://www.bilibili.com/video/BV1ev4y1C7na),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||
|
||
## 思路
|
||
|
||
本题首先要清楚两点:
|
||
|
||
- 只有一只股票!
|
||
- 当前只有买股票或者卖股票的操作
|
||
|
||
想获得利润至少要两天为一个交易单元。
|
||
|
||
### 贪心算法
|
||
|
||
这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入.....循环反复。
|
||
|
||
**如果想到其实最终利润是可以分解的,那么本题就很容易了!**
|
||
|
||
如何分解呢?
|
||
|
||
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
|
||
|
||
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
|
||
|
||
**此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!**
|
||
|
||
那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。
|
||
|
||
如图:
|
||
|
||

|
||
|
||
一些同学陷入:第一天怎么就没有利润呢,第一天到底算不算的困惑中。
|
||
|
||
第一天当然没有利润,至少要第二天才会有利润,所以利润的序列比股票序列少一天!
|
||
|
||
从图中可以发现,其实我们需要收集每天的正利润就可以,**收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间**。
|
||
|
||
那么只收集正利润就是贪心所贪的地方!
|
||
|
||
**局部最优:收集每天的正利润,全局最优:求得最大利润**。
|
||
|
||
局部最优可以推出全局最优,找不出反例,试一试贪心!
|
||
|
||
对应 C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int maxProfit(vector<int>& prices) {
|
||
int result = 0;
|
||
for (int i = 1; i < prices.size(); i++) {
|
||
result += max(prices[i] - prices[i - 1], 0);
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
- 时间复杂度:O(n)
|
||
- 空间复杂度:O(1)
|
||
|
||
### 动态规划
|
||
|
||
动态规划将在下一个系列详细讲解,本题解先给出我的 C++代码(带详细注释),想先学习的话,可以看本篇:[122.买卖股票的最佳时机II(动态规划)](https://programmercarl.com/0122.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4%BD%B3%E6%97%B6%E6%9C%BAII%EF%BC%88%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%EF%BC%89.html#%E6%80%9D%E8%B7%AF)
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int maxProfit(vector<int>& prices) {
|
||
// dp[i][1]第i天持有的最多现金
|
||
// dp[i][0]第i天持有股票后的最多现金
|
||
int n = prices.size();
|
||
vector<vector<int>> dp(n, vector<int>(2, 0));
|
||
dp[0][0] -= prices[0]; // 持股票
|
||
for (int i = 1; i < n; i++) {
|
||
// 第i天持股票所剩最多现金 = max(第i-1天持股票所剩现金, 第i-1天持现金-买第i天的股票)
|
||
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
|
||
// 第i天持有最多现金 = max(第i-1天持有的最多现金,第i-1天持有股票的最多现金+第i天卖出股票)
|
||
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
|
||
}
|
||
return max(dp[n - 1][0], dp[n - 1][1]);
|
||
}
|
||
};
|
||
```
|
||
|
||
- 时间复杂度:$O(n)$
|
||
- 空间复杂度:$O(n)$
|
||
|
||
## 总结
|
||
|
||
股票问题其实是一个系列的,属于动态规划的范畴,因为目前在讲解贪心系列,所以股票问题会在之后的动态规划系列中详细讲解。
|
||
|
||
**可以看出有时候,贪心往往比动态规划更巧妙,更好用,所以别小看了贪心算法**。
|
||
|
||
**本题中理解利润拆分是关键点!** 不要整块的去看,而是把整体利润拆为每天的利润。
|
||
|
||
一旦想到这里了,很自然就会想到贪心了,即:只收集每天的正利润,最后稳稳的就是最大利润了。
|
||
|
||
## 其他语言版本
|
||
|
||
### Java:
|
||
|
||
贪心:
|
||
|
||
```java
|
||
// 贪心思路
|
||
class Solution {
|
||
public int maxProfit(int[] prices) {
|
||
int result = 0;
|
||
for (int i = 1; i < prices.length; i++) {
|
||
result += Math.max(prices[i] - prices[i - 1], 0);
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
```
|
||
|
||
动态规划:
|
||
|
||
```java
|
||
class Solution { // 动态规划
|
||
public int maxProfit(int[] prices) {
|
||
// [天数][是否持有股票]
|
||
int[][] dp = new int[prices.length][2];
|
||
|
||
// base case
|
||
dp[0][0] = 0;
|
||
dp[0][1] = -prices[0];
|
||
|
||
for (int i = 1; i < prices.length; i++) {
|
||
// dp公式
|
||
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
|
||
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
|
||
}
|
||
|
||
return dp[prices.length - 1][0];
|
||
}
|
||
}
|
||
```
|
||
|
||
### Python:
|
||
|
||
贪心:
|
||
|
||
```python
|
||
class Solution:
|
||
def maxProfit(self, prices: List[int]) -> int:
|
||
result = 0
|
||
for i in range(1, len(prices)):
|
||
result += max(prices[i] - prices[i - 1], 0)
|
||
return result
|
||
```
|
||
|
||
动态规划:
|
||
|
||
```python
|
||
class Solution:
|
||
def maxProfit(self, prices: List[int]) -> int:
|
||
length = len(prices)
|
||
dp = [[0] * 2 for _ in range(length)]
|
||
dp[0][0] = -prices[0]
|
||
dp[0][1] = 0
|
||
for i in range(1, length):
|
||
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
|
||
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
|
||
return dp[-1][1]
|
||
```
|
||
|
||
### Go:
|
||
|
||
贪心算法
|
||
|
||
```go
|
||
func maxProfit(prices []int) int {
|
||
var sum int
|
||
for i := 1; i < len(prices); i++ {
|
||
// 累加每次大于0的交易
|
||
if prices[i] - prices[i-1] > 0 {
|
||
sum += prices[i] - prices[i-1]
|
||
}
|
||
}
|
||
return sum
|
||
}
|
||
```
|
||
|
||
动态规划
|
||
|
||
```go
|
||
func maxProfit(prices []int) int {
|
||
dp := make([][]int, len(prices))
|
||
for i := 0; i < len(dp); i++ {
|
||
dp[i] = make([]int, 2)
|
||
}
|
||
// dp[i][0]表示在状态i不持有股票的现金,dp[i][1]为持有股票的现金
|
||
dp[0][0], dp[0][1] = 0, -prices[0]
|
||
for i := 1; i < len(prices); i++ {
|
||
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
|
||
dp[i][1] = max(dp[i-1][0] - prices[i], dp[i-1][1])
|
||
}
|
||
return dp[len(prices)-1][0]
|
||
|
||
}
|
||
func max(a, b int) int {
|
||
if a > b {
|
||
return a
|
||
}
|
||
return b
|
||
}
|
||
```
|
||
|
||
### JavaScript:
|
||
|
||
贪心
|
||
|
||
```Javascript
|
||
var maxProfit = function(prices) {
|
||
let result = 0
|
||
for(let i = 1; i < prices.length; i++) {
|
||
result += Math.max(prices[i] - prices[i - 1], 0)
|
||
}
|
||
return result
|
||
};
|
||
```
|
||
|
||
动态规划
|
||
|
||
```javascript
|
||
const maxProfit = (prices) => {
|
||
let dp = Array.from(Array(prices.length), () => Array(2).fill(0));
|
||
// dp[i][0] 表示第i天持有股票所得现金。
|
||
// dp[i][1] 表示第i天不持有股票所得最多现金
|
||
dp[0][0] = 0 - prices[0];
|
||
dp[0][1] = 0;
|
||
for (let i = 1; i < prices.length; i++) {
|
||
// 如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
|
||
// 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
|
||
// 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
|
||
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
|
||
|
||
// 在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
|
||
// 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
|
||
// 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0]
|
||
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
|
||
}
|
||
|
||
return dp[prices.length - 1][1];
|
||
};
|
||
```
|
||
|
||
### TypeScript:
|
||
|
||
贪心
|
||
```typescript
|
||
function maxProfit(prices: number[]): number {
|
||
let resProfit: number = 0;
|
||
for (let i = 1, length = prices.length; i < length; i++) {
|
||
resProfit += Math.max(prices[i] - prices[i - 1], 0);
|
||
}
|
||
return resProfit;
|
||
}
|
||
```
|
||
|
||
动态规划
|
||
```typescript
|
||
function maxProfit(prices: number[]): number {
|
||
const dp = Array(prices.length)
|
||
.fill(0)
|
||
.map(() => Array(2).fill(0))
|
||
dp[0][0] = -prices[0]
|
||
for (let i = 1; i < prices.length; i++) {
|
||
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i])
|
||
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i])
|
||
}
|
||
return dp[prices.length - 1][1]
|
||
}
|
||
```
|
||
|
||
### Rust:
|
||
|
||
贪心:
|
||
|
||
```Rust
|
||
impl Solution {
|
||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||
let mut result = 0;
|
||
for i in 1..prices.len() {
|
||
result += (prices[i] - prices[i - 1]).max(0);
|
||
}
|
||
result
|
||
}
|
||
}
|
||
```
|
||
|
||
动态规划:
|
||
|
||
```Rust
|
||
impl Solution {
|
||
pub fn max_profit(prices: Vec<i32>) -> i32 {
|
||
let mut dp = vec![vec![0; 2]; prices.len()];
|
||
dp[0][0] = -prices[0];
|
||
for i in 1..prices.len() {
|
||
dp[i][0] = dp[i - 1][0].max(dp[i - 1][1] - prices[i]);
|
||
dp[i][1] = dp[i - 1][1].max(dp[i - 1][0] + prices[i]);
|
||
}
|
||
dp[prices.len() - 1][1]
|
||
}
|
||
}
|
||
```
|
||
|
||
### C:
|
||
|
||
贪心:
|
||
|
||
```c
|
||
int maxProfit(int* prices, int pricesSize){
|
||
int result = 0;
|
||
int i;
|
||
//从第二个元素开始遍历数组,与之前的元素进行比较
|
||
for(i = 1; i < pricesSize; ++i) {
|
||
//若该元素比前面元素大,则说明有利润。代表买入
|
||
if(prices[i] > prices[i-1])
|
||
result+= prices[i]-prices[i-1];
|
||
}
|
||
return result;
|
||
}
|
||
```
|
||
|
||
动态规划:
|
||
|
||
```c
|
||
#define max(a, b) (((a) > (b)) ? (a) : (b))
|
||
|
||
int maxProfit(int* prices, int pricesSize){
|
||
int dp[pricesSize][2];
|
||
dp[0][0] = 0 - prices[0];
|
||
dp[0][1] = 0;
|
||
|
||
int i;
|
||
for(i = 1; i < pricesSize; ++i) {
|
||
// dp[i][0]为i-1天持股的钱数/在第i天用i-1天的钱买入的最大值。
|
||
// 若i-1天持股,且第i天买入股票比i-1天持股时更亏,说明应在i-1天时持股
|
||
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);
|
||
//dp[i][1]为i-1天不持股钱数/在第i天卖出所持股票dp[i-1][0] + prices[i]的最大值
|
||
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);
|
||
}
|
||
// 返回在最后一天不持股时的钱数(将股票卖出后钱最大化)
|
||
return dp[pricesSize - 1][1];
|
||
}
|
||
```
|
||
|
||
### Scala:
|
||
|
||
贪心:
|
||
|
||
```scala
|
||
object Solution {
|
||
def maxProfit(prices: Array[Int]): Int = {
|
||
var result = 0
|
||
for (i <- 1 until prices.length) {
|
||
if (prices(i) > prices(i - 1)) {
|
||
result += prices(i) - prices(i - 1)
|
||
}
|
||
}
|
||
result
|
||
}
|
||
}
|
||
```
|
||
### C#
|
||
```csharp
|
||
public class Solution
|
||
{
|
||
public int MaxProfit(int[] prices)
|
||
{
|
||
int res = 0;
|
||
for (int i = 0; i < prices.Length - 1; i++)
|
||
{
|
||
res += Math.Max(0, prices[i + 1] - prices[i]);
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
|
||
|