mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2026-02-02 18:39:09 +08:00
374 lines
11 KiB
Markdown
374 lines
11 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
|
||
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
|
||
</p>
|
||
<p align="center"><strong>欢迎大家<a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
> 利用二叉搜索树的特性搞起!
|
||
|
||
# 530.二叉搜索树的最小绝对差
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/minimum-absolute-difference-in-bst/)
|
||
|
||
给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。
|
||
|
||
示例:
|
||
|
||

|
||
|
||
提示:树中至少有 2 个节点。
|
||
|
||
# 思路
|
||
|
||
题目中要求在二叉搜索树上任意两节点的差的绝对值的最小值。
|
||
|
||
**注意是二叉搜索树**,二叉搜索树可是有序的。
|
||
|
||
遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。
|
||
|
||
## 递归
|
||
|
||
那么二叉搜索树采用中序遍历,其实就是一个有序数组。
|
||
|
||
**在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。**
|
||
|
||
最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
private:
|
||
vector<int> vec;
|
||
void traversal(TreeNode* root) {
|
||
if (root == NULL) return;
|
||
traversal(root->left);
|
||
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
|
||
traversal(root->right);
|
||
}
|
||
public:
|
||
int getMinimumDifference(TreeNode* root) {
|
||
vec.clear();
|
||
traversal(root);
|
||
if (vec.size() < 2) return 0;
|
||
int result = INT_MAX;
|
||
for (int i = 1; i < vec.size(); i++) { // 统计有序数组的最小差值
|
||
result = min(result, vec[i] - vec[i-1]);
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
以上代码是把二叉搜索树转化为有序数组了,其实在二叉搜素树中序遍历的过程中,我们就可以直接计算了。
|
||
|
||
需要用一个pre节点记录一下cur节点的前一个节点。
|
||
|
||
如图:
|
||
|
||

|
||
|
||
一些同学不知道在递归中如何记录前一个节点的指针,其实实现起来是很简单的,大家只要看过一次,写过一次,就掌握了。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
private:
|
||
int result = INT_MAX;
|
||
TreeNode* pre;
|
||
void traversal(TreeNode* cur) {
|
||
if (cur == NULL) return;
|
||
traversal(cur->left); // 左
|
||
if (pre != NULL){ // 中
|
||
result = min(result, cur->val - pre->val);
|
||
}
|
||
pre = cur; // 记录前一个
|
||
traversal(cur->right); // 右
|
||
}
|
||
public:
|
||
int getMinimumDifference(TreeNode* root) {
|
||
traversal(root);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
是不是看上去也并不复杂!
|
||
|
||
## 迭代
|
||
|
||
看过这两篇[二叉树:听说递归能做的,栈也能做!](https://programmercarl.com/二叉树的迭代遍历.html),[二叉树:前中后序迭代方式的写法就不能统一一下么?](https://programmercarl.com/二叉树的统一迭代法.html)文章之后,不难写出两种中序遍历的迭代法。
|
||
|
||
下面我给出其中的一种中序遍历的迭代法,代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int getMinimumDifference(TreeNode* root) {
|
||
stack<TreeNode*> st;
|
||
TreeNode* cur = root;
|
||
TreeNode* pre = NULL;
|
||
int result = INT_MAX;
|
||
while (cur != NULL || !st.empty()) {
|
||
if (cur != NULL) { // 指针来访问节点,访问到最底层
|
||
st.push(cur); // 将访问的节点放进栈
|
||
cur = cur->left; // 左
|
||
} else {
|
||
cur = st.top();
|
||
st.pop();
|
||
if (pre != NULL) { // 中
|
||
result = min(result, cur->val - pre->val);
|
||
}
|
||
pre = cur;
|
||
cur = cur->right; // 右
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
# 总结
|
||
|
||
**遇到在二叉搜索树上求什么最值,求差值之类的,都要思考一下二叉搜索树可是有序的,要利用好这一特点。**
|
||
|
||
同时要学会在递归遍历的过程中如何记录前后两个指针,这也是一个小技巧,学会了还是很受用的。
|
||
|
||
后面我将继续介绍一系列利用二叉搜索树特性的题目。
|
||
|
||
|
||
|
||
# 其他语言版本
|
||
|
||
|
||
## Java
|
||
|
||
递归
|
||
```java
|
||
class Solution {
|
||
TreeNode pre;// 记录上一个遍历的结点
|
||
int result = Integer.MAX_VALUE;
|
||
public int getMinimumDifference(TreeNode root) {
|
||
if(root==null)return 0;
|
||
traversal(root);
|
||
return result;
|
||
}
|
||
public void traversal(TreeNode root){
|
||
if(root==null)return;
|
||
//左
|
||
traversal(root.left);
|
||
//中
|
||
if(pre!=null){
|
||
result = Math.min(result,root.val-pre.val);
|
||
}
|
||
pre = root;
|
||
//右
|
||
traversal(root.right);
|
||
}
|
||
}
|
||
```
|
||
迭代法-中序遍历
|
||
|
||
```java
|
||
class Solution {
|
||
TreeNode pre;
|
||
Stack<TreeNode> stack;
|
||
public int getMinimumDifference(TreeNode root) {
|
||
if (root == null) return 0;
|
||
stack = new Stack<>();
|
||
TreeNode cur = root;
|
||
int result = Integer.MAX_VALUE;
|
||
while (cur != null || !stack.isEmpty()) {
|
||
if (cur != null) {
|
||
stack.push(cur); // 将访问的节点放进栈
|
||
cur = cur.left; // 左
|
||
}else {
|
||
cur = stack.pop();
|
||
if (pre != null) { // 中
|
||
result = Math.min(result, cur.val - pre.val);
|
||
}
|
||
pre = cur;
|
||
cur = cur.right; // 右
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
```
|
||
## Python
|
||
|
||
递归
|
||
```python
|
||
class Solution:
|
||
def getMinimumDifference(self, root: TreeNode) -> int:
|
||
res = []
|
||
r = float("inf")
|
||
def buildaList(root): //把二叉搜索树转换成有序数组
|
||
if not root: return None
|
||
if root.left: buildaList(root.left) //左
|
||
res.append(root.val) //中
|
||
if root.right: buildaList(root.right) //右
|
||
return res
|
||
|
||
buildaList(root)
|
||
for i in range(len(res)-1): // 统计有序数组的最小差值
|
||
r = min(abs(res[i]-res[i+1]),r)
|
||
return r
|
||
```
|
||
|
||
迭代法-中序遍历
|
||
```python
|
||
class Solution:
|
||
def getMinimumDifference(self, root: TreeNode) -> int:
|
||
stack = []
|
||
cur = root
|
||
pre = None
|
||
result = float('inf')
|
||
while cur or stack:
|
||
if cur: # 指针来访问节点,访问到最底层
|
||
stack.append(cur)
|
||
cur = cur.left
|
||
else: # 逐一处理节点
|
||
cur = stack.pop()
|
||
if pre: # 当前节点和前节点的值的差值
|
||
result = min(result, cur.val - pre.val)
|
||
pre = cur
|
||
cur = cur.right
|
||
return result
|
||
|
||
```
|
||
|
||
## Go:
|
||
|
||
中序遍历,然后计算最小差值
|
||
|
||
```go
|
||
func getMinimumDifference(root *TreeNode) int {
|
||
var res []int
|
||
findMIn(root,&res)
|
||
min:=1000000//一个比较大的值
|
||
for i:=1;i<len(res);i++{
|
||
tempValue:=res[i]-res[i-1]
|
||
if tempValue<min{
|
||
min=tempValue
|
||
}
|
||
}
|
||
return min
|
||
}
|
||
//中序遍历
|
||
func findMIn(root *TreeNode,res *[]int){
|
||
if root==nil{return}
|
||
findMIn(root.Left,res)
|
||
*res=append(*res,root.Val)
|
||
findMIn(root.Right,res)
|
||
}
|
||
```
|
||
```go
|
||
// 中序遍历的同时计算最小值
|
||
func getMinimumDifference(root *TreeNode) int {
|
||
// 保留前一个节点的指针
|
||
var prev *TreeNode
|
||
// 定义一个比较大的值
|
||
min := math.MaxInt64
|
||
var travel func(node *TreeNode)
|
||
travel = func(node *TreeNode) {
|
||
if node == nil {
|
||
return
|
||
}
|
||
travel(node.Left)
|
||
if prev != nil && node.Val - prev.Val < min {
|
||
min = node.Val - prev.Val
|
||
}
|
||
prev = node
|
||
travel(node.Right)
|
||
}
|
||
travel(root)
|
||
return min
|
||
}
|
||
```
|
||
|
||
## JavaScript
|
||
递归 先转换为有序数组
|
||
```javascript
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val, left, right) {
|
||
* this.val = (val===undefined ? 0 : val)
|
||
* this.left = (left===undefined ? null : left)
|
||
* this.right = (right===undefined ? null : right)
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {number}
|
||
*/
|
||
var getMinimumDifference = function (root) {
|
||
let arr = [];
|
||
const buildArr = (root) => {
|
||
if (root) {
|
||
buildArr(root.left);
|
||
arr.push(root.val);
|
||
buildArr(root.right);
|
||
}
|
||
}
|
||
buildArr(root);
|
||
let diff = arr[arr.length - 1];
|
||
for (let i = 1; i < arr.length; ++i) {
|
||
if (diff > arr[i] - arr[i - 1])
|
||
diff = arr[i] - arr[i - 1];
|
||
}
|
||
return diff;
|
||
};
|
||
```
|
||
递归 在递归的过程中更新最小值
|
||
```js
|
||
var getMinimumDifference = function(root) {
|
||
let res = Infinity
|
||
let preNode = null
|
||
// 中序遍历
|
||
const inorder = (node) => {
|
||
if(!node) return
|
||
inorder(node.left)
|
||
// 更新res
|
||
if(preNode) res = Math.min(res, node.val - preNode.val)
|
||
// 记录前一个节点
|
||
preNode = node
|
||
inorder(node.right)
|
||
}
|
||
inorder(root)
|
||
return res
|
||
}
|
||
```
|
||
|
||
迭代 中序遍历
|
||
```js
|
||
var getMinimumDifference = function(root) {
|
||
let stack = []
|
||
let cur = root
|
||
let res = Infinity
|
||
let pre = null
|
||
while(cur || stack.length) {
|
||
if(cur) {
|
||
stack.push(cur)
|
||
cur = cur.left
|
||
} else {
|
||
cur = stack.pop()
|
||
if(pre) res = Math.min(res, cur.val - pre.val)
|
||
pre = cur
|
||
cur = cur.right
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
-----------------------
|
||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码.jpg width=450> </img></div>
|