Files
leetcode-master/problems/背包问题理论基础多重背包.md
2025-05-19 17:11:04 +08:00

238 lines
7.7 KiB
Markdown
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

* [做项目多个C++、Java、Go、测开、前端项目](https://www.programmercarl.com/other/kstar.html)
* [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html)
* [背八股40天挑战高频面试题](https://www.programmercarl.com/xunlian/bagu.html)
# 动态规划:关于多重背包,你该了解这些!
本题力扣上没有原题,大家可以去[卡码网第56题](https://kamacoder.com/problempage.php?pid=1066)去练习,题意是一样的。
之前我们已经系统的讲解了01背包和完全背包如果没有看过的录友建议先把如下三篇文章仔细阅读一波。
* [动态规划关于01背包问题你该了解这些](https://programmercarl.com/背包理论基础01背包-1.html)
* [动态规划关于01背包问题你该了解这些滚动数组](https://programmercarl.com/背包理论基础01背包-2.html)
* [动态规划:关于完全背包,你该了解这些!](https://programmercarl.com/背包问题理论基础完全背包.html)
这次我们再来说一说多重背包
## 多重背包
对于多重背包,我在力扣上还没发现对应的题目,所以这里就做一下简单介绍,大家大概了解一下。
有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用每件耗费的空间是Ci 价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
多重背包和01背包是非常像的 为什么和01背包像呢
每件物品最多有Mi件可用把Mi件摊开其实就是一个01背包问题了。
例如:
背包最大重量为10。
物品为:
| | 重量 | 价值 | 数量 |
| --- | --- | --- | --- |
| 物品0 | 1 | 15 | 2 |
| 物品1 | 3 | 20 | 3 |
| 物品2 | 4 | 30 | 2 |
问背包能背的物品最大价值是多少?
和如下情况有区别么?
| | 重量 | 价值 | 数量 |
| --- | --- | --- | --- |
| 物品0 | 1 | 15 | 1 |
| 物品0 | 1 | 15 | 1 |
| 物品1 | 3 | 20 | 1 |
| 物品1 | 3 | 20 | 1 |
| 物品1 | 3 | 20 | 1 |
| 物品2 | 4 | 30 | 1 |
| 物品2 | 4 | 30 | 1 |
毫无区别这就转成了一个01背包问题了且每个物品只用一次。
练习题目:[卡码网第56题多重背包](https://kamacoder.com/problempage.php?pid=1066)
代码如下:
```CPP
// 超时了
#include<iostream>
#include<vector>
using namespace std;
int main() {
int bagWeight,n;
cin >> bagWeight >> n;
vector<int> weight(n, 0);
vector<int> value(n, 0);
vector<int> nums(n, 0);
for (int i = 0; i < n; i++) cin >> weight[i];
for (int i = 0; i < n; i++) cin >> value[i];
for (int i = 0; i < n; i++) cin >> nums[i];
for (int i = 0; i < n; i++) {
while (nums[i] > 1) { // 物品数量不是一的,都展开
weight.push_back(weight[i]);
value.push_back(value[i]);
nums[i]--;
}
}
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品注意此时的物品数量不是n
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
```
大家去提交之后,发现这个解法超时了,为什么呢,哪里耗时呢?
耗时就在 这段代码:
```CPP
for (int i = 0; i < n; i++) {
while (nums[i] > 1) { // 物品数量不是一的,都展开
weight.push_back(weight[i]);
value.push_back(value[i]);
nums[i]--;
}
}
```
如果物品数量很多的话C++中这种操作十分费时主要消耗在vector的动态底层扩容上。其实这里也可以优化先把 所有物品数量都计算好一起申请vector的空间。
这里也有另一种实现方式就是把每种商品遍历的个数放在01背包里面在遍历一遍。
代码如下:(详看注释)
```CPP
#include<iostream>
#include<vector>
using namespace std;
int main() {
int bagWeight,n;
cin >> bagWeight >> n;
vector<int> weight(n, 0);
vector<int> value(n, 0);
vector<int> nums(n, 0);
for (int i = 0; i < n; i++) cin >> weight[i];
for (int i = 0; i < n; i++) cin >> value[i];
for (int i = 0; i < n; i++) cin >> nums[i];
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < n; i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
// 以上为01背包然后加一个遍历个数
for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
}
}
}
cout << dp[bagWeight] << endl;
}
```
时间复杂度O(m × n × k)m物品种类个数n背包容量k单类物品数量
从代码里可以看出是01背包里面在加一个for循环遍历一个每种商品的数量。 和01背包还是如出一辙的。
当然还有那种二进制优化的方法,其实就是把每种物品的数量,打包成一个个独立的包。
和以上在循环遍历上有所不同,因为是分拆为各个包最后可以组成一个完整背包,具体原理我就不做过多解释了,大家了解一下就行,面试的话基本不会考完这个深度了,感兴趣可以自己深入研究一波。
## 总结
多重背包在面试中基本不会出现力扣上也没有对应的题目大家对多重背包的掌握程度知道它是一种01背包并能在01背包的基础上写出对应代码就可以了。
至于背包九讲里面还有混合背包,二维费用背包,分组背包等等这些,大家感兴趣可以自己去学习学习,这里也不做介绍了,面试也不会考。
## 其他语言版本
### Java
```Java
import java.util.Scanner;
class multi_pack{
public static void main(String [] args) {
Scanner sc = new Scanner(System.in);
/**
* bagWeight:背包容量
* n:物品种类
*/
int bagWeight, n;
//获取用户输入数据,中间用空格隔开,回车键换行
bagWeight = sc.nextInt();
n = sc.nextInt();
int[] weight = new int[n];
int[] value = new int[n];
int[] nums = new int[n];
for (int i = 0; i < n; i++) weight[i] = sc.nextInt();
for (int i = 0; i < n; i++) value[i] = sc.nextInt();
for (int i = 0; i < n; i++) nums[i] = sc.nextInt();
int[] dp = new int[bagWeight + 1];
//先遍历物品再遍历背包作为01背包处理
for (int i = 0; i < n; i++) {
for (int j = bagWeight; j >= weight[i]; j--) {
//遍历每种物品的个数
for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {
dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);
}
}
}
System.out.println(dp[bagWeight]);
}
}
```
### Python
```python
C, N = input().split(" ")
C, N = int(C), int(N)
# value数组需要判断一下非空不然过不了
weights = [int(x) for x in input().split(" ")]
values = [int(x) for x in input().split(" ") if x]
nums = [int(x) for x in input().split(" ")]
dp = [0] * (C + 1)
# 遍历背包容量
for i in range(N):
for j in range(C, weights[i] - 1, -1):
for k in range(1, nums[i] + 1):
# 遍历 k如果已经大于背包容量直接跳出循环
if k * weights[i] > j:
break
dp[j] = max(dp[j], dp[j - weights[i] * k] + values[i] * k)
print(dp[-1])
```
### Go
### TypeScript