mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2026-02-02 18:39:09 +08:00
563 lines
19 KiB
Markdown
Executable File
563 lines
19 KiB
Markdown
Executable File
* [做项目(多个C++、Java、Go、测开、前端项目)](https://www.programmercarl.com/other/kstar.html)
|
||
* [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html)
|
||
* [背八股(40天挑战高频面试题)](https://www.programmercarl.com/xunlian/bagu.html)
|
||
|
||
|
||
> 构造二叉搜索树,一不小心就平衡了
|
||
|
||
# 108.将有序数组转换为二叉搜索树
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/convert-sorted-array-to-binary-search-tree/)
|
||
|
||
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。
|
||
|
||
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
|
||
|
||
示例:
|
||
|
||
|
||

|
||
|
||
## 算法公开课
|
||
|
||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[构造平衡二叉搜索树!| LeetCode:108.将有序数组转换为二叉搜索树](https://www.bilibili.com/video/BV1uR4y1X7qL?share_source=copy_web),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||
|
||
## 思路
|
||
|
||
做这道题目之前大家可以了解一下这几道:
|
||
|
||
* [106.从中序与后序遍历序列构造二叉树](https://programmercarl.com/0106.从中序与后序遍历序列构造二叉树.html)
|
||
* [654.最大二叉树](https://programmercarl.com/0654.最大二叉树.html)中其实已经讲过了,如果根据数组构造一棵二叉树。
|
||
* [701.二叉搜索树中的插入操作](https://programmercarl.com/0701.二叉搜索树中的插入操作.html)
|
||
* [450.删除二叉搜索树中的节点](https://programmercarl.com/0450.删除二叉搜索树中的节点.html)
|
||
|
||
|
||
进入正题:
|
||
|
||
题目中说要转换为一棵高度平衡二叉搜索树。为什么强调要平衡呢?
|
||
|
||
因为只要给我们一个有序数组,如果不强调平衡,都可以以线性结构来构造二叉搜索树。
|
||
|
||
例如 有序数组[-10,-3,0,5,9] 就可以构造成这样的二叉搜索树,如图。
|
||
|
||

|
||
|
||
上图中,是符合二叉搜索树的特性吧,如果要这么做的话,是不是本题意义就不大了,所以才强调是平衡二叉搜索树。
|
||
|
||
其实数组构造二叉树,构成平衡树是自然而然的事情,因为大家默认都是从数组中间位置取值作为节点元素,一般不会随机取。**所以想构成不平衡的二叉树是自找麻烦**。
|
||
|
||
|
||
在[二叉树:构造二叉树登场!](https://programmercarl.com/0106.从中序与后序遍历序列构造二叉树.html)和[二叉树:构造一棵最大的二叉树](https://programmercarl.com/0654.最大二叉树.html)中其实已经讲过了,如果根据数组构造一棵二叉树。
|
||
|
||
**本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间**。
|
||
|
||
本题其实要比[二叉树:构造二叉树登场!](https://programmercarl.com/0106.从中序与后序遍历序列构造二叉树.html) 和 [二叉树:构造一棵最大的二叉树](https://programmercarl.com/0654.最大二叉树.html)简单一些,因为有序数组构造二叉搜索树,寻找分割点就比较容易了。
|
||
|
||
分割点就是数组中间位置的节点。
|
||
|
||
那么为问题来了,如果数组长度为偶数,中间节点有两个,取哪一个?
|
||
|
||
取哪一个都可以,只不过构成了不同的平衡二叉搜索树。
|
||
|
||
例如:输入:[-10,-3,0,5,9]
|
||
|
||
如下两棵树,都是这个数组的平衡二叉搜索树:
|
||
|
||

|
||
|
||
如果要分割的数组长度为偶数的时候,中间元素为两个,是取左边元素 就是树1,取右边元素就是树2。
|
||
|
||
**这也是题目中强调答案不是唯一的原因。 理解这一点,这道题目算是理解到位了**。
|
||
|
||
### 递归
|
||
|
||
递归三部曲:
|
||
|
||
* 确定递归函数返回值及其参数
|
||
|
||
删除二叉树节点,增加二叉树节点,都是用递归函数的返回值来完成,这样是比较方便的。
|
||
|
||
相信大家如果仔细看了[二叉树:搜索树中的插入操作](https://programmercarl.com/0701.二叉搜索树中的插入操作.html)和[二叉树:搜索树中的删除操作](https://programmercarl.com/0450.删除二叉搜索树中的节点.html),一定会对递归函数返回值的作用深有感触。
|
||
|
||
那么本题要构造二叉树,依然用递归函数的返回值来构造中节点的左右孩子。
|
||
|
||
再来看参数,首先是传入数组,然后就是左下标left和右下标right,我们在[二叉树:构造二叉树登场!](https://programmercarl.com/0106.从中序与后序遍历序列构造二叉树.html)中提过,在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组。
|
||
|
||
所以代码如下:
|
||
|
||
```
|
||
// 左闭右闭区间[left, right]
|
||
TreeNode* traversal(vector<int>& nums, int left, int right)
|
||
```
|
||
|
||
这里注意,**我这里定义的是左闭右闭区间,在不断分割的过程中,也会坚持左闭右闭的区间,这又涉及到我们讲过的循环不变量**。
|
||
|
||
在[二叉树:构造二叉树登场!](https://programmercarl.com/0106.从中序与后序遍历序列构造二叉树.html),[35.搜索插入位置](https://programmercarl.com/0035.搜索插入位置.html) 和[59.螺旋矩阵II](https://programmercarl.com/0059.螺旋矩阵II.html)都详细讲过循环不变量。
|
||
|
||
|
||
* 确定递归终止条件
|
||
|
||
这里定义的是左闭右闭的区间,所以当区间 left > right的时候,就是空节点了。
|
||
|
||
代码如下:
|
||
|
||
```
|
||
if (left > right) return nullptr;
|
||
```
|
||
|
||
* 确定单层递归的逻辑
|
||
|
||
首先取数组中间元素的位置,不难写出`int mid = (left + right) / 2;`,**这么写其实有一个问题,就是数值越界,例如left和right都是最大int,这么操作就越界了,在[二分法](https://programmercarl.com/0035.搜索插入位置.html)中尤其需要注意!**
|
||
|
||
所以可以这么写:`int mid = left + ((right - left) / 2);`
|
||
|
||
但本题leetcode的测试数据并不会越界,所以怎么写都可以。但需要有这个意识!
|
||
|
||
取了中间位置,就开始以中间位置的元素构造节点,代码:`TreeNode* root = new TreeNode(nums[mid]);`。
|
||
|
||
接着划分区间,root的左孩子接住下一层左区间的构造节点,右孩子接住下一层右区间构造的节点。
|
||
|
||
最后返回root节点,单层递归整体代码如下:
|
||
|
||
```
|
||
int mid = left + ((right - left) / 2);
|
||
TreeNode* root = new TreeNode(nums[mid]);
|
||
root->left = traversal(nums, left, mid - 1);
|
||
root->right = traversal(nums, mid + 1, right);
|
||
return root;
|
||
```
|
||
|
||
这里`int mid = left + ((right - left) / 2);`的写法相当于是如果数组长度为偶数,中间位置有两个元素,取靠左边的。
|
||
|
||
* 递归整体代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
private:
|
||
TreeNode* traversal(vector<int>& nums, int left, int right) {
|
||
if (left > right) return nullptr;
|
||
int mid = left + ((right - left) / 2);
|
||
TreeNode* root = new TreeNode(nums[mid]);
|
||
root->left = traversal(nums, left, mid - 1);
|
||
root->right = traversal(nums, mid + 1, right);
|
||
return root;
|
||
}
|
||
public:
|
||
TreeNode* sortedArrayToBST(vector<int>& nums) {
|
||
TreeNode* root = traversal(nums, 0, nums.size() - 1);
|
||
return root;
|
||
}
|
||
};
|
||
```
|
||
|
||
**注意:在调用traversal的时候传入的left和right为什么是0和nums.size() - 1,因为定义的区间为左闭右闭**。
|
||
|
||
|
||
### 迭代法
|
||
|
||
迭代法可以通过三个队列来模拟,一个队列放遍历的节点,一个队列放左区间下标,一个队列放右区间下标。
|
||
|
||
模拟的就是不断分割的过程,C++代码如下:(我已经详细注释)
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
TreeNode* sortedArrayToBST(vector<int>& nums) {
|
||
if (nums.size() == 0) return nullptr;
|
||
|
||
TreeNode* root = new TreeNode(0); // 初始根节点
|
||
queue<TreeNode*> nodeQue; // 放遍历的节点
|
||
queue<int> leftQue; // 保存左区间下标
|
||
queue<int> rightQue; // 保存右区间下标
|
||
nodeQue.push(root); // 根节点入队列
|
||
leftQue.push(0); // 0为左区间下标初始位置
|
||
rightQue.push(nums.size() - 1); // nums.size() - 1为右区间下标初始位置
|
||
|
||
while (!nodeQue.empty()) {
|
||
TreeNode* curNode = nodeQue.front();
|
||
nodeQue.pop();
|
||
int left = leftQue.front(); leftQue.pop();
|
||
int right = rightQue.front(); rightQue.pop();
|
||
int mid = left + ((right - left) / 2);
|
||
|
||
curNode->val = nums[mid]; // 将mid对应的元素给中间节点
|
||
|
||
if (left <= mid - 1) { // 处理左区间
|
||
curNode->left = new TreeNode(0);
|
||
nodeQue.push(curNode->left);
|
||
leftQue.push(left);
|
||
rightQue.push(mid - 1);
|
||
}
|
||
|
||
if (right >= mid + 1) { // 处理右区间
|
||
curNode->right = new TreeNode(0);
|
||
nodeQue.push(curNode->right);
|
||
leftQue.push(mid + 1);
|
||
rightQue.push(right);
|
||
}
|
||
}
|
||
return root;
|
||
}
|
||
};
|
||
```
|
||
|
||
## 总结
|
||
|
||
**在[二叉树:构造二叉树登场!](https://programmercarl.com/0106.从中序与后序遍历序列构造二叉树.html) 和 [二叉树:构造一棵最大的二叉树](https://programmercarl.com/0654.最大二叉树.html)之后,我们顺理成章的应该构造一下二叉搜索树了,一不小心还是一棵平衡二叉搜索树**。
|
||
|
||
其实思路也是一样的,不断中间分割,然后递归处理左区间,右区间,也可以说是分治。
|
||
|
||
此时相信大家应该对通过递归函数的返回值来增删二叉树很熟悉了,这也是常规操作。
|
||
|
||
在定义区间的过程中我们又一次强调了循环不变量的重要性。
|
||
|
||
最后依然给出迭代的方法,其实就是模拟取中间元素,然后不断分割去构造二叉树的过程。
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
### Java
|
||
|
||
递归: 左闭右开 [left,right)
|
||
```Java
|
||
class Solution {
|
||
public TreeNode sortedArrayToBST(int[] nums) {
|
||
return sortedArrayToBST(nums, 0, nums.length);
|
||
}
|
||
|
||
public TreeNode sortedArrayToBST(int[] nums, int left, int right) {
|
||
if (left >= right) {
|
||
return null;
|
||
}
|
||
if (right - left == 1) {
|
||
return new TreeNode(nums[left]);
|
||
}
|
||
int mid = left + (right - left) / 2;
|
||
TreeNode root = new TreeNode(nums[mid]);
|
||
root.left = sortedArrayToBST(nums, left, mid);
|
||
root.right = sortedArrayToBST(nums, mid + 1, right);
|
||
return root;
|
||
}
|
||
}
|
||
|
||
```
|
||
|
||
递归: 左闭右闭 [left,right]
|
||
```java
|
||
class Solution {
|
||
public TreeNode sortedArrayToBST(int[] nums) {
|
||
TreeNode root = traversal(nums, 0, nums.length - 1);
|
||
return root;
|
||
}
|
||
|
||
// 左闭右闭区间[left, right]
|
||
private TreeNode traversal(int[] nums, int left, int right) {
|
||
if (left > right) return null;
|
||
|
||
int mid = left + ((right - left) >> 1);
|
||
TreeNode root = new TreeNode(nums[mid]);
|
||
root.left = traversal(nums, left, mid - 1);
|
||
root.right = traversal(nums, mid + 1, right);
|
||
return root;
|
||
}
|
||
}
|
||
```
|
||
|
||
迭代: 左闭右闭 [left,right]
|
||
```java
|
||
class Solution {
|
||
public TreeNode sortedArrayToBST(int[] nums) {
|
||
if (nums.length == 0) return null;
|
||
|
||
//根节点初始化
|
||
TreeNode root = new TreeNode(-1);
|
||
Queue<TreeNode> nodeQueue = new LinkedList<>();
|
||
Queue<Integer> leftQueue = new LinkedList<>();
|
||
Queue<Integer> rightQueue = new LinkedList<>();
|
||
|
||
// 根节点入队列
|
||
nodeQueue.offer(root);
|
||
// 0为左区间下标初始位置
|
||
leftQueue.offer(0);
|
||
// nums.size() - 1为右区间下标初始位置
|
||
rightQueue.offer(nums.length - 1);
|
||
|
||
while (!nodeQueue.isEmpty()) {
|
||
TreeNode currNode = nodeQueue.poll();
|
||
int left = leftQueue.poll();
|
||
int right = rightQueue.poll();
|
||
int mid = left + ((right - left) >> 1);
|
||
|
||
// 将mid对应的元素给中间节点
|
||
currNode.val = nums[mid];
|
||
|
||
// 处理左区间
|
||
if (left <= mid - 1) {
|
||
currNode.left = new TreeNode(-1);
|
||
nodeQueue.offer(currNode.left);
|
||
leftQueue.offer(left);
|
||
rightQueue.offer(mid - 1);
|
||
}
|
||
|
||
// 处理右区间
|
||
if (right >= mid + 1) {
|
||
currNode.right = new TreeNode(-1);
|
||
nodeQueue.offer(currNode.right);
|
||
leftQueue.offer(mid + 1);
|
||
rightQueue.offer(right);
|
||
}
|
||
}
|
||
return root;
|
||
}
|
||
}
|
||
```
|
||
|
||
### Python
|
||
递归法
|
||
```python
|
||
class Solution:
|
||
def traversal(self, nums: List[int], left: int, right: int) -> TreeNode:
|
||
if left > right:
|
||
return None
|
||
|
||
mid = left + (right - left) // 2
|
||
root = TreeNode(nums[mid])
|
||
root.left = self.traversal(nums, left, mid - 1)
|
||
root.right = self.traversal(nums, mid + 1, right)
|
||
return root
|
||
|
||
def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
|
||
root = self.traversal(nums, 0, len(nums) - 1)
|
||
return root
|
||
|
||
```
|
||
递归 精简(自身调用)
|
||
```python
|
||
class Solution:
|
||
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
|
||
if not nums:
|
||
return
|
||
mid = len(nums) // 2
|
||
root = TreeNode(nums[mid])
|
||
root.left = self.sortedArrayToBST(nums[:mid])
|
||
root.right = self.sortedArrayToBST(nums[mid + 1 :])
|
||
return root
|
||
```
|
||
|
||
迭代法
|
||
```python
|
||
from collections import deque
|
||
|
||
class Solution:
|
||
def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
|
||
if len(nums) == 0:
|
||
return None
|
||
|
||
root = TreeNode(0) # 初始根节点
|
||
nodeQue = deque() # 放遍历的节点
|
||
leftQue = deque() # 保存左区间下标
|
||
rightQue = deque() # 保存右区间下标
|
||
|
||
nodeQue.append(root) # 根节点入队列
|
||
leftQue.append(0) # 0为左区间下标初始位置
|
||
rightQue.append(len(nums) - 1) # len(nums) - 1为右区间下标初始位置
|
||
|
||
while nodeQue:
|
||
curNode = nodeQue.popleft()
|
||
left = leftQue.popleft()
|
||
right = rightQue.popleft()
|
||
mid = left + (right - left) // 2
|
||
|
||
curNode.val = nums[mid] # 将mid对应的元素给中间节点
|
||
|
||
if left <= mid - 1: # 处理左区间
|
||
curNode.left = TreeNode(0)
|
||
nodeQue.append(curNode.left)
|
||
leftQue.append(left)
|
||
rightQue.append(mid - 1)
|
||
|
||
if right >= mid + 1: # 处理右区间
|
||
curNode.right = TreeNode(0)
|
||
nodeQue.append(curNode.right)
|
||
leftQue.append(mid + 1)
|
||
rightQue.append(right)
|
||
|
||
return root
|
||
|
||
```
|
||
|
||
### Go
|
||
|
||
递归(隐含回溯)
|
||
|
||
```go
|
||
func sortedArrayToBST(nums []int) *TreeNode {
|
||
if len(nums) == 0 { //终止条件,最后数组为空则可以返回
|
||
return nil
|
||
}
|
||
idx := len(nums)/2
|
||
root := &TreeNode{Val: nums[idx]}
|
||
|
||
root.Left = sortedArrayToBST(nums[:idx])
|
||
root.Right = sortedArrayToBST(nums[idx+1:])
|
||
|
||
return root
|
||
}
|
||
```
|
||
|
||
### JavaScript
|
||
递归
|
||
|
||
```javascript
|
||
var sortedArrayToBST = function (nums) {
|
||
const buildTree = (Arr, left, right) => {
|
||
if (left > right)
|
||
return null;
|
||
|
||
let mid = Math.floor(left + (right - left) / 2);
|
||
|
||
let root = new TreeNode(Arr[mid]);
|
||
root.left = buildTree(Arr, left, mid - 1);
|
||
root.right = buildTree(Arr, mid + 1, right);
|
||
return root;
|
||
}
|
||
return buildTree(nums, 0, nums.length - 1);
|
||
};
|
||
```
|
||
迭代
|
||
```JavaScript
|
||
var sortedArrayToBST = function(nums) {
|
||
if(nums.length===0) {
|
||
return null;
|
||
}
|
||
let root = new TreeNode(0); //初始根节点
|
||
let nodeQue = [root]; //放遍历的节点,并初始化
|
||
let leftQue = [0]; //放左区间的下标,初始化
|
||
let rightQue = [nums.length-1]; // 放右区间的下标
|
||
|
||
while(nodeQue.length) {
|
||
let curNode = nodeQue.pop();
|
||
let left = leftQue.pop();
|
||
let right = rightQue.pop();
|
||
let mid = left + Math.floor((right-left)/2);
|
||
|
||
curNode.val = nums[mid]; //将下标为mid的元素给中间节点
|
||
|
||
// 处理左区间
|
||
if(left <= mid-1) {
|
||
curNode.left = new TreeNode(0);
|
||
nodeQue.push(curNode.left);
|
||
leftQue.push(left);
|
||
rightQue.push(mid-1);
|
||
}
|
||
|
||
// 处理右区间
|
||
if(right >= mid+1) {
|
||
curNode.right = new TreeNode(0);
|
||
nodeQue.push(curNode.right);
|
||
leftQue.push(mid+1);
|
||
rightQue.push(right);
|
||
}
|
||
}
|
||
return root;
|
||
};
|
||
```
|
||
### TypeScript
|
||
|
||
```typescript
|
||
function sortedArrayToBST(nums: number[]): TreeNode | null {
|
||
function recur(nums: number[], left: number, right: number): TreeNode | null {
|
||
if (left > right) return null;
|
||
let mid: number = Math.floor((left + right) / 2);
|
||
const root: TreeNode = new TreeNode(nums[mid]);
|
||
root.left = recur(nums, left, mid - 1);
|
||
root.right = recur(nums, mid + 1, right);
|
||
return root;
|
||
}
|
||
return recur(nums, 0, nums.length - 1);
|
||
};
|
||
```
|
||
|
||
### C
|
||
|
||
递归
|
||
```c
|
||
struct TreeNode* traversal(int* nums, int left, int right) {
|
||
if (left > right)
|
||
return NULL;
|
||
int mid = left + ((right - left) / 2);
|
||
struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));
|
||
root->val = nums[mid];
|
||
root->left = traversal(nums, left, mid - 1);
|
||
root->right = traversal(nums, mid + 1, right);
|
||
return root;
|
||
}
|
||
|
||
struct TreeNode* sortedArrayToBST(int* nums, int numsSize) {
|
||
struct TreeNode* root = traversal(nums, 0, numsSize - 1);
|
||
return root;
|
||
}
|
||
```
|
||
|
||
### Scala
|
||
|
||
递归:
|
||
|
||
```scala
|
||
object Solution {
|
||
def sortedArrayToBST(nums: Array[Int]): TreeNode = {
|
||
def buildTree(left: Int, right: Int): TreeNode = {
|
||
if (left > right) return null // 当left大于right的时候,返回空
|
||
// 最中间的节点是当前节点
|
||
var mid = left + (right - left) / 2
|
||
var curNode = new TreeNode(nums(mid))
|
||
curNode.left = buildTree(left, mid - 1)
|
||
curNode.right = buildTree(mid + 1, right)
|
||
curNode
|
||
}
|
||
buildTree(0, nums.size - 1)
|
||
}
|
||
}
|
||
```
|
||
|
||
### Rust
|
||
|
||
递归:
|
||
|
||
```rust
|
||
impl Solution {
|
||
pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
|
||
if nums.is_empty() {
|
||
return None;
|
||
}
|
||
let index = nums.len() / 2;
|
||
let mut root = TreeNode::new(nums[index]);
|
||
|
||
root.left = Self::sorted_array_to_bst(nums[..index].to_vec());
|
||
root.right = Self::sorted_array_to_bst(nums[index + 1..].to_vec());
|
||
Some(Rc::new(RefCell::new(root)))
|
||
}
|
||
}
|
||
```
|
||
### C#
|
||
```csharp
|
||
// 递归
|
||
public TreeNode SortedArrayToBST(int[] nums)
|
||
{
|
||
return Traversal(nums, 0, nums.Length - 1);
|
||
}
|
||
public TreeNode Traversal(int[] nums, int left, int right)
|
||
{
|
||
if (left > right) return null;
|
||
int mid = left + (right - left) / 2;
|
||
TreeNode node = new TreeNode(nums[mid]);
|
||
node.left = Traversal(nums, left, mid - 1);
|
||
node.right = Traversal(nums, mid + 1, right);
|
||
return node;
|
||
}
|
||
```
|
||
|
||
|
||
|