Files
leetcode-master/problems/0121.买卖股票的最佳时机.md
2025-05-19 17:11:04 +08:00

628 lines
17 KiB
Markdown
Executable File
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
* [做项目多个C++、Java、Go、测开、前端项目](https://www.programmercarl.com/other/kstar.html)
* [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html)
* [背八股40天挑战高频面试题](https://www.programmercarl.com/xunlian/bagu.html)
# 121. 买卖股票的最佳时机
[力扣题目链接](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/)
给定一个数组 prices 它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
* 示例 1
* 输入:[7,1,5,3,6,4]
* 输出5
解释:在第 2 天(股票价格 = 1的时候买入在第 5 天(股票价格 = 6的时候卖出最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
* 示例 2
* 输入prices = [7,6,4,3,1]
* 输出0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[动态规划之 LeetCode121.买卖股票的最佳时机1](https://www.bilibili.com/video/BV1Xe4y1u77q),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
## 思路
### 暴力
这道题目最直观的想法,就是暴力,找最优间距了。
```CPP
class Solution {
public:
int maxProfit(vector<int>& prices) {
int result = 0;
for (int i = 0; i < prices.size(); i++) {
for (int j = i + 1; j < prices.size(); j++){
result = max(result, prices[j] - prices[i]);
}
}
return result;
}
};
```
* 时间复杂度O(n^2)
* 空间复杂度O(1)
当然该方法超时了。
### 贪心
因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。
C++代码如下:
```CPP
class Solution {
public:
int maxProfit(vector<int>& prices) {
int low = INT_MAX;
int result = 0;
for (int i = 0; i < prices.size(); i++) {
low = min(low, prices[i]); // 取最左最小价格
result = max(result, prices[i] - low); // 直接取最大区间利润
}
return result;
}
};
```
* 时间复杂度O(n)
* 空间复杂度O(1)
### 动态规划
动规五部曲分析如下:
1. 确定dp数组dp table以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 **这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?**
其实一开始现金是0那么加入第i天买入股票现金就是 -prices[i] 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
**注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态**
很多同学把“持有”和“买入”没区分清楚。
在下面递推公式分析中,我会进一步讲解。
2. 确定递推公式
如果第i天持有股票即dp[i][0] 那么可以由两个状态推出来
* 第i-1天就持有股票那么就保持现状所得现金就是昨天持有股票的所得现金 即dp[i - 1][0]
* 第i天买入股票所得现金就是买入今天的股票后所得现金即-prices[i]
那么dp[i][0]应该选所得现金最大的所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1] 也可以由两个状态推出来
* 第i-1天就不持有股票那么就保持现状所得现金就是昨天不持有股票的所得现金 即dp[i - 1][1]
* 第i天卖出股票所得现金就是按照今天股票价格卖出后所得现金即prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
这样递推公式我们就分析完了
3. dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票此时的持有股票就一定是买入股票了因为不可能有前一天推出来所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票不持有股票那么现金就是0所以dp[0][1] = 0;
4. 确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
5. 举例推导dp数组
以示例1输入[7,1,5,3,6,4]为例dp数组状态如下
![121.买卖股票的最佳时机](https://file1.kamacoder.com/i/algo/20210224225642465.png)
dp[5][1]就是最终结果。
为什么不是dp[5][0]呢?
**因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!**
以上分析完毕C++代码如下:
```CPP
// 版本一
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if (len == 0) return 0;
vector<vector<int>> dp(len, vector<int>(2));
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
}
return dp[len - 1][1];
}
};
```
* 时间复杂度O(n)
* 空间复杂度O(n)
从递推公式可以看出dp[i]只是依赖于dp[i - 1]的状态。
```
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
```
那么我们只需要记录 当前天的dp状态和前一天的dp状态就可以了可以使用滚动数组来节省空间代码如下
```CPP
// 版本二
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
}
return dp[(len - 1) % 2][1];
}
};
```
* 时间复杂度O(n)
* 空间复杂度O(1)
这里能写出版本一就可以了版本二虽然原理都一样但是想直接写出版本二还是有点麻烦容易自己给自己找bug。
所以建议是先写出版本一,然后在版本一的基础上优化成版本二,而不是直接就写出版本二。
## 其他语言版本
### Java:
> 贪心法:
```java
class Solution {
public int maxProfit(int[] prices) {
// 找到一个最小的购入点
int low = Integer.MAX_VALUE;
// res不断更新直到数组循环完毕
int res = 0;
for(int i = 0; i < prices.length; i++){
low = Math.min(prices[i], low);
res = Math.max(prices[i] - low, res);
}
return res;
}
}
```
> 动态规划:版本一
```java
// 解法1
class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) return 0;
int length = prices.length;
// dp[i][0]代表第i天持有股票的最大收益
// dp[i][1]代表第i天不持有股票的最大收益
int[][] dp = new int[length][2];
int result = 0;
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return dp[length - 1][1];
}
}
```
> 动态规划:版本二(使用二維數組(和卡哥思路一致),下面還有使用一維滾動數組的更優化版本)
```Java
class Solution {
public int maxProfit(int[] prices) {
int len = prices.length;
int dp[][] = new int[2][2];
dp[0][0] = - prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++){
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], - prices[i]);
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
}
return dp[(len - 1) % 2][1];
}
}
```
> 动态规划:版本二(使用一維數組)
``` java
class Solution {
public int maxProfit(int[] prices) {
int[] dp = new int[2];
// 记录一次交易,一次交易有买入卖出两种状态
// 0代表持有1代表卖出
dp[0] = -prices[0];
dp[1] = 0;
// 可以参考斐波那契问题的优化方式
// 我们从 i=1 开始遍历数组,一共有 prices.length 天,
// 所以是 i<=prices.length
for (int i = 1; i <= prices.length; i++) {
// 前一天持有;或当天买入
dp[0] = Math.max(dp[0], -prices[i - 1]);
// 如果 dp[0] 被更新,那么 dp[1] 肯定会被更新为正数的 dp[1]
// 而不是 dp[0]+prices[i-1]==0 的0
// 所以这里使用会改变的dp[0]也是可以的
// 当然 dp[1] 初始值为 0 ,被更新成 0 也没影响
// 前一天卖出;或当天卖出, 当天要卖出,得前一天持有才行
dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
}
return dp[1];
}
}
```
### Python:
> 贪心法:
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
low = float("inf")
result = 0
for i in range(len(prices)):
low = min(low, prices[i]) #取最左最小价格
result = max(result, prices[i] - low) #直接取最大区间利润
return result
```
> 动态规划:版本一
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
if length == 0:
return 0
dp = [[0] * 2 for _ in range(length)]
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i][0] = max(dp[i-1][0], -prices[i])
dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])
return dp[-1][1]
```
> 动态规划:版本二
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp = [[0] * 2 for _ in range(2)] #注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] = -prices[0]
dp[0][1] = 0
for i in range(1, length):
dp[i % 2][0] = max(dp[(i-1) % 2][0], -prices[i])
dp[i % 2][1] = max(dp[(i-1) % 2][1], prices[i] + dp[(i-1) % 2][0])
return dp[(length-1) % 2][1]
```
> 动态规划:版本三
```python
class Solution:
def maxProfit(self, prices: List[int]) -> int:
length = len(prices)
dp0, dp1 = -prices[0], 0 #注意这里只维护两个常量因为dp0的更新不受dp1的影响
for i in range(1, length):
dp1 = max(dp1, dp0 + prices[i])
dp0 = max(dp0, -prices[i])
return dp1
```
### Go:
> 贪心法:
```Go
func maxProfit(prices []int) int {
min := prices[0]
res := 0
for i := 1; i < len(prices); i++ {
if prices[i] - min > res {
res = prices[i]-min
}
if min > prices[i] {
min = prices[i]
}
}
return res
}
```
> 动态规划:版本一
```Go
func maxProfit(prices []int) int {
length := len(prices)
if length == 0{return 0}
dp := make([][]int,length)
for i := 0; i < length; i++ {
dp[i] = make([]int, 2)
}
dp[0][0] = -prices[0]
dp[0][1] = 0
for i := 1; i < length; i++ {
dp[i][0] = max(dp[i-1][0], -prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
}
return dp[length-1][1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
```
> 动态规划:版本二
```Go
func maxProfit(prices []int) int {
dp := [2][2]int{}
dp[0][0] = -prices[0]
dp[0][1] = 0
for i := 1; i < len(prices); i++ {
dp[i%2][0] = max(dp[(i-1)%2][0], -prices[i])
dp[i%2][1] = max(dp[(i-1)%2][1], dp[(i-1)%2][0]+prices[i])
}
return dp[(len(prices)-1)%2][1]
}
func max(a, b int) int {
if a > b{
return a
}
return b
}
```
### JavaScript:
> 动态规划
```javascript
const maxProfit = prices => {
const len = prices.length;
// 创建dp数组
const dp = new Array(len).fill([0, 0]);
// dp数组初始化
dp[0] = [-prices[0], 0];
for (let i = 1; i < len; i++) {
// 更新dp[i]
dp[i] = [
Math.max(dp[i - 1][0], -prices[i]),
Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]),
];
}
return dp[len - 1][1];
};
```
> 贪心法
```javascript
var maxProfit = function(prices) {
let lowerPrice = prices[0];// 重点是维护这个最小值(贪心的思想)
let profit = 0;
for(let i = 0; i < prices.length; i++){
lowerPrice = Math.min(lowerPrice, prices[i]);// 贪心地选择左面的最小价格
profit = Math.max(profit, prices[i] - lowerPrice);// 遍历一趟就可以获得最大利润
}
return profit;
};
```
### TypeScript
> 贪心法
```typescript
function maxProfit(prices: number[]): number {
if (prices.length === 0) return 0;
let buy: number = prices[0];
let profitMax: number = 0;
for (let i = 1, length = prices.length; i < length; i++) {
profitMax = Math.max(profitMax, prices[i] - buy);
buy = Math.min(prices[i], buy);
}
return profitMax;
};
```
> 动态规划:版本一
```typescript
function maxProfit(prices: number[]): number {
/**
dp[i][0]: 第i天持有股票的最大现金
dp[i][1]: 第i天不持有股票的最大现金
*/
const length = prices.length;
if (length === 0) return 0;
const dp: number[][] = [];
dp[0] = [-prices[0], 0];
for (let i = 1; i < length; i++) {
dp[i] = [];
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return dp[length - 1][1];
};
```
> 动态规划:版本二
```typescript
// dp[i][0] 表示第i天持有股票所得最多现金
// dp[i][1] 表示第i天不持有股票所得最多现金
function maxProfit(prices: number[]): number {
const dp:number[][] = Array(2).fill(0).map(item => Array(2));
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (let i = 1; i < prices.length; i++) {
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], -prices[i]);
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i]);
}
// 返回不持有股票的最大现金
return dp[(prices.length-1) % 2][1];
};
```
### C#
> 贪心法
```csharp
public class Solution
{
public int MaxProfit(int[] prices)
{
int min = Int32.MaxValue;
int res = 0;
for (int i = 0; i < prices.Length; i++)
{
min = Math.Min(prices[i], min);
res = Math.Max(prices[i] - min, res);
}
return res;
}
}
```
> 动态规划
```csharp
public class Solution
{
public int MaxProfit(int[] prices)
{
int[] dp = new int[2];
int size = prices.Length;
(dp[0], dp[1]) = (-prices[0], 0);
for (int i = 0; i < size; i++)
{
dp[0] = Math.Max(dp[0], -prices[i]);
dp[1] = Math.Max(dp[1], dp[0]+prices[i]);
}
return dp[1];
}
}
```
### C
> 贪心
```c
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) > (b) ? (b) : (a))
int maxProfit(int* prices, int pricesSize) {
int low = INT_MIN;
int result = 0;
for(int i = 0; i < pricesSize; i++){
low = min(low, prices[i]);
result = max(result, prices[i] - low);
}
return result;
}
```
> 动态规划
```c
#define max(a, b) ((a) > (b) ? (a) : (b))
int maxProfit(int* prices, int pricesSize){
if(pricesSize == 0){
return 0;
}
// dp初始化
int ** dp = malloc(sizeof (int *) * pricesSize);
for(int i = 0; i < pricesSize; i++){
dp[i] = malloc(sizeof (int ) * 2);
}
// 下标0表示持有股票的情况下的最大现金下标1表示不持有股票的情况下获得的最大现金
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1; i < pricesSize; i++){
dp[i][0] = max(dp[i - 1][0], - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[pricesSize - 1][1];
}
```
### Rust:
> 贪心
```rust
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let (mut low, mut res) = (i32::MAX, 0);
for p in prices {
low = p.min(low);
res = res.max(p - low);
}
res
}
}
```
> 动态规划
```rust
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut dp = vec![-prices[0], 0];
for p in prices {
dp[0] = dp[0].max(-p);
dp[1] = dp[1].max(dp[0] + p);
}
dp[1]
}
}
```