Files
leetcode-master/problems/0106.从中序与后序遍历序列构造二叉树.md

901 lines
33 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<p align="center">
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
</p>
<p align="center"><strong>欢迎大家<a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
看完本文,可以一起解决如下两道题目
* 106.从中序与后序遍历序列构造二叉树
* 105.从前序与中序遍历序列构造二叉树
# 106.从中序与后序遍历序列构造二叉树
[力扣题目链接](https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/)
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
![106. 从中序与后序遍历序列构造二叉树1](https://img-blog.csdnimg.cn/20210203154316774.png)
## 思路
首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来在切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。
如果让我们肉眼看两个序列,画一颗二叉树的话,应该分分钟都可以画出来。
流程如图:
![106.从中序与后序遍历序列构造二叉树](https://img-blog.csdnimg.cn/20210203154249860.png)
那么代码应该怎么写呢?
说到一层一层切割,就应该想到了递归。
来看一下一共分几步:
* 第一步:如果数组大小为零的话,说明是空节点了。
* 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
* 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
* 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
* 第五步:切割后序数组,切成后序左数组和后序右数组
* 第六步:递归处理左区间和右区间
不难写出如下代码:(先把框架写出来)
```CPP
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
// 第一步
if (postorder.size() == 0) return NULL;
// 第二步:后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
// 叶子节点
if (postorder.size() == 1) return root;
// 第三步:找切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 第四步:切割中序数组,得到 中序左数组和中序右数组
// 第五步:切割后序数组,得到 后序左数组和后序右数组
// 第六步
root->left = traversal(, );
root->right = traversal(, );
return root;
}
```
**难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。**
此时应该注意确定切割的标准,是左闭右开,还有左开又闭,还是左闭又闭,这个就是不变量,要在递归中保持这个不变量。
**在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭又闭,必然乱套!**
我在[数组:每次遇到二分法,都是一看就会,一写就废](https://programmercarl.com/0035.搜索插入位置.html)和[数组:这个循环可以转懵很多人!](https://programmercarl.com/0059.螺旋矩阵II.html)中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。
首先要切割中序数组,为什么先切割中序数组呢?
切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。
中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:
```C++
// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
```
接下来就要切割后序数组了。
首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。
后序数组的切割点怎么找?
后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。
**此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。**
中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。
代码如下:
```
// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);
// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
```
此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。
接下来可以递归了,代码如下:
```
root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);
```
完整代码如下:
### C++完整代码
```CPP
class Solution {
private:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
if (postorder.size() == 0) return NULL;
// 后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
// 叶子节点
if (postorder.size() == 1) return root;
// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
// postorder 舍弃末尾元素
postorder.resize(postorder.size() - 1);
// 切割后序数组
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
// [0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};
```
相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。
加了日志的代码如下加了日志的代码不要在leetcode上提交容易超时
```CPP
class Solution {
private:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
if (postorder.size() == 0) return NULL;
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
if (postorder.size() == 1) return root;
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
postorder.resize(postorder.size() - 1);
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
// 一下为日志
cout << "----------" << endl;
cout << "leftInorder :";
for (int i : leftInorder) {
cout << i << " ";
}
cout << endl;
cout << "rightInorder :";
for (int i : rightInorder) {
cout << i << " ";
}
cout << endl;
cout << "leftPostorder :";
for (int i : leftPostorder) {
cout << i << " ";
}
cout << endl;
cout << "rightPostorder :";
for (int i : rightPostorder) {
cout << i << " ";
}
cout << endl;
root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};
```
**此时应该发现了如上的代码性能并不好应为每层递归定定义了新的vector就是数组既耗时又耗空间但上面的代码是最好理解的为了方便读者理解所以用如上的代码来讲解。**
下面给出用下表索引写出的代码版本思路是一样的只不过不用重复定义vector了每次用下表索引来分割
### C++优化版本
```CPP
class Solution {
private:
// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
if (postorderBegin == postorderEnd) return NULL;
int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);
if (postorderEnd - postorderBegin == 1) return root;
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;
// 切割后序数组
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
int leftPostorderBegin = postorderBegin;
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
// 左闭右开的原则
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};
```
那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(**该版本不要在leetcode上提交容易超时**
```CPP
class Solution {
private:
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
if (postorderBegin == postorderEnd) return NULL;
int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);
if (postorderEnd - postorderBegin == 1) return root;
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;
// 切割后序数组
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
int leftPostorderBegin = postorderBegin;
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了
cout << "----------" << endl;
cout << "leftInorder :";
for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;
cout << "rightInorder :";
for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;
cout << "leftpostorder :";
for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {
cout << postorder[i] << " ";
}
cout << endl;
cout << "rightpostorder :";
for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {
cout << postorder[i] << " ";
}
cout << endl;
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};
```
# 105.从前序与中序遍历序列构造二叉树
[力扣题目链接](https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/)
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
![105. 从前序与中序遍历序列构造二叉树](https://img-blog.csdnimg.cn/20210203154626672.png)
## 思路
本题和106是一样的道理。
我就直接给出代码了。
带日志的版本C++代码如下: **带日志的版本仅用于调试不要在leetcode上提交会超时**
```CPP
class Solution {
private:
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
if (preorderBegin == preorderEnd) return NULL;
int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
TreeNode* root = new TreeNode(rootValue);
if (preorderEnd - preorderBegin == 1) return root;
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;
// 切割前序数组
// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
int leftPreorderBegin = preorderBegin + 1;
int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
int rightPreorderEnd = preorderEnd;
cout << "----------" << endl;
cout << "leftInorder :";
for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;
cout << "rightInorder :";
for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;
cout << "leftPreorder :";
for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {
cout << preorder[i] << " ";
}
cout << endl;
cout << "rightPreorder :";
for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {
cout << preorder[i] << " ";
}
cout << endl;
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, preorder, leftPreorderBegin, leftPreorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (inorder.size() == 0 || preorder.size() == 0) return NULL;
return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
}
};
```
105.从前序与中序遍历序列构造二叉树最后版本C++代码:
```CPP
class Solution {
private:
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
if (preorderBegin == preorderEnd) return NULL;
int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
TreeNode* root = new TreeNode(rootValue);
if (preorderEnd - preorderBegin == 1) return root;
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;
// 切割前序数组
// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
int leftPreorderBegin = preorderBegin + 1;
int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
int rightPreorderEnd = preorderEnd;
root->left = traversal(inorder, leftInorderBegin, leftInorderEnd, preorder, leftPreorderBegin, leftPreorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (inorder.size() == 0 || preorder.size() == 0) return NULL;
// 参数坚持左闭右开的原则
return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
}
};
```
# 思考题
前序和中序可以唯一确定一颗二叉树。
后序和中序可以唯一确定一颗二叉树。
那么前序和后序可不可以唯一确定一颗二叉树呢?
**前序和后序不能唯一确定一颗二叉树!**,因为没有中序遍历无法确定左右部分,也就是无法分割。
举一个例子:
![106.从中序与后序遍历序列构造二叉树2](https://img-blog.csdnimg.cn/20210203154720326.png)
tree1 的前序遍历是[1 2 3] 后序遍历是[3 2 1]。
tree2 的前序遍历是[1 2 3] 后序遍历是[3 2 1]。
那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!
所以前序和后序不能唯一确定一颗二叉树!
# 总结
之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。
所以要避免眼高手低,踏实的把代码写出来。
我同时给出了添加日志的代码版本,因为这种题目是不太容易写出来调一调就能过的,所以一定要把流程日志打出来,看看符不符合自己的思路。
大家遇到这种题目的时候,也要学会打日志来调试(如何打日志有时候也是个技术活),不要脑动模拟,脑动模拟很容易越想越乱。
最后我还给出了为什么前序和中序可以唯一确定一颗二叉树,后序和中序可以唯一确定一颗二叉树,而前序和后序却不行。
认真研究完本篇,相信大家对二叉树的构造会清晰很多。
# 其他语言版本
## Java
106.从中序与后序遍历序列构造二叉树
```java
class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
return buildTree1(inorder, 0, inorder.length, postorder, 0, postorder.length);
}
public TreeNode buildTree1(int[] inorder, int inLeft, int inRight,
int[] postorder, int postLeft, int postRight) {
// 没有元素了
if (inRight - inLeft < 1) {
return null;
}
// 只有一个元素了
if (inRight - inLeft == 1) {
return new TreeNode(inorder[inLeft]);
}
// 后序数组postorder里最后一个即为根结点
int rootVal = postorder[postRight - 1];
TreeNode root = new TreeNode(rootVal);
int rootIndex = 0;
// 根据根结点的值找到该值在中序数组inorder里的位置
for (int i = inLeft; i < inRight; i++) {
if (inorder[i] == rootVal) {
rootIndex = i;
}
}
// 根据rootIndex划分左右子树
root.left = buildTree1(inorder, inLeft, rootIndex,
postorder, postLeft, postLeft + (rootIndex - inLeft));
root.right = buildTree1(inorder, rootIndex + 1, inRight,
postorder, postLeft + (rootIndex - inLeft), postRight - 1);
return root;
}
}
```
105.从前序与中序遍历序列构造二叉树
```java
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
return helper(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
}
public TreeNode helper(int[] preorder, int preLeft, int preRight,
int[] inorder, int inLeft, int inRight) {
// 递归终止条件
if (inLeft > inRight || preLeft > preRight) return null;
// val 为前序遍历第一个的值,也即是根节点的值
// idx 为根据根节点的值来找中序遍历的下标
int idx = inLeft, val = preorder[preLeft];
TreeNode root = new TreeNode(val);
for (int i = inLeft; i <= inRight; i++) {
if (inorder[i] == val) {
idx = i;
break;
}
}
// 根据 idx 来递归找左右子树
root.left = helper(preorder, preLeft + 1, preLeft + (idx - inLeft),
inorder, inLeft, idx - 1);
root.right = helper(preorder, preLeft + (idx - inLeft) + 1, preRight,
inorder, idx + 1, inRight);
return root;
}
}
```
## Python
105.从前序与中序遍历序列构造二叉树
```python
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
# 第一步: 特殊情况讨论: 树为空. 或者说是递归终止条件
if not preorder:
return None
# 第二步: 前序遍历的第一个就是当前的中间节点.
root_val = preorder[0]
root = TreeNode(root_val)
# 第三步: 找切割点.
separator_idx = inorder.index(root_val)
# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
inorder_left = inorder[:separator_idx]
inorder_right = inorder[separator_idx + 1:]
# 第五步: 切割preorder数组. 得到preorder数组的左,右半边.
# ⭐️ 重点1: 中序数组大小一定跟前序数组大小是相同的.
preorder_left = preorder[1:1 + len(inorder_left)]
preorder_right = preorder[1 + len(inorder_left):]
# 第六步: 递归
root.left = self.buildTree(preorder_left, inorder_left)
root.right = self.buildTree(preorder_right, inorder_right)
return root
```
106.从中序与后序遍历序列构造二叉树
```python
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
# 第一步: 特殊情况讨论: 树为空. (递归终止条件)
if not postorder:
return None
# 第二步: 后序遍历的最后一个就是当前的中间节点.
root_val = postorder[-1]
root = TreeNode(root_val)
# 第三步: 找切割点.
separator_idx = inorder.index(root_val)
# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
inorder_left = inorder[:separator_idx]
inorder_right = inorder[separator_idx + 1:]
# 第五步: 切割postorder数组. 得到postorder数组的左,右半边.
# ⭐️ 重点1: 中序数组大小一定跟后序数组大小是相同的.
postorder_left = postorder[:len(inorder_left)]
postorder_right = postorder[len(inorder_left): len(postorder) - 1]
# 第六步: 递归
root.left = self.buildTree(inorder_left, postorder_left)
root.right = self.buildTree(inorder_right, postorder_right)
return root
```
## Go
106 从中序与后序遍历序列构造二叉树
```go
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(inorder []int, postorder []int) *TreeNode {
if len(inorder)<1||len(postorder)<1{return nil}
//先找到根节点(后续遍历的最后一个就是根节点)
nodeValue:=postorder[len(postorder)-1]
//从中序遍历中找到一分为二的点,左边为左子树,右边为右子树
left:=findRootIndex(inorder,nodeValue)
//构造root
root:=&TreeNode{Val: nodeValue,
Left: buildTree(inorder[:left],postorder[:left]),//将后续遍历一分为二,左边为左子树,右边为右子树
Right: buildTree(inorder[left+1:],postorder[left:len(postorder)-1])}
return root
}
func findRootIndex(inorder []int,target int) (index int){
for i:=0;i<len(inorder);i++{
if target==inorder[i]{
return i
}
}
return -1
}
```
105 从前序与中序遍历序列构造二叉树
```go
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
if len(preorder)<1||len(inorder)<1{return nil}
left:=findRootIndex(preorder[0],inorder)
root:=&TreeNode{
Val: preorder[0],
Left: buildTree(preorder[1:left+1],inorder[:left]),
Right: buildTree(preorder[left+1:],inorder[left+1:])}
return root
}
func findRootIndex(target int,inorder []int) int{
for i:=0;i<len(inorder);i++{
if target==inorder[i]{
return i
}
}
return -1
}
```
## JavaScript
```javascript
var buildTree = function(inorder, postorder) {
if (!postorder.length) return null
let root = new TreeNode(postorder[postorder.length - 1])
let index = inorder.findIndex(number => number === root.val)
root.left = buildTree(inorder.slice(0, index), postorder.slice(0, index))
root.right = buildTree(inorder.slice(index + 1, inorder.length), postorder.slice(index, postorder.length - 1))
return root
};
```
从前序与中序遍历序列构造二叉树
```javascript
var buildTree = function(preorder, inorder) {
if(!preorder.length)
return null;
let root = new TreeNode(preorder[0]);
let mid = inorder.findIndex((number) => number === root.val);
root.left = buildTree(preorder.slice(1, mid + 1), inorder.slice(0, mid));
root.right = buildTree(preorder.slice(mid + 1, preorder.length), inorder.slice(mid + 1, inorder.length));
return root;
};
```
## C
106 从中序与后序遍历序列构造二叉树
```c
int linearSearch(int* arr, int arrSize, int key) {
int i;
for(i = 0; i < arrSize; i++) {
if(arr[i] == key)
return i;
}
return -1;
}
struct TreeNode* buildTree(int* inorder, int inorderSize, int* postorder, int postorderSize){
//若中序遍历数组中没有元素则返回NULL
if(!inorderSize)
return NULL;
//创建一个新的结点将node的val设置为后序遍历的最后一个元素
struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));
node->val = postorder[postorderSize - 1];
//通过线性查找找到中间结点在中序数组中的位置
int index = linearSearch(inorder, inorderSize, postorder[postorderSize - 1]);
//左子树数组大小为index
//右子树的数组大小为数组大小减index减1减的1为中间结点
int rightSize = inorderSize - index - 1;
node->left = buildTree(inorder, index, postorder, index);
node->right = buildTree(inorder + index + 1, rightSize, postorder + index, rightSize);
return node;
}
```
105 从前序与中序遍历序列构造二叉树
```c
struct TreeNode* buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize){
// 递归结束条件传入的数组大小为0
if(!preorderSize)
return NULL;
// 1.找到前序遍历数组的第一个元素, 创建结点。左右孩子设置为NULL。
int rootValue = preorder[0];
struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));
root->val = rootValue;
root->left = NULL;
root->right = NULL;
// 2.若前序遍历数组的大小为1返回该结点
if(preorderSize == 1)
return root;
// 3.根据该结点切割中序遍历数组,将中序遍历数组分割成左右两个数组。算出他们的各自大小
int index;
for(index = 0; index < inorderSize; index++) {
if(inorder[index] == rootValue)
break;
}
int leftNum = index;
int rightNum = inorderSize - index - 1;
int* leftInorder = inorder;
int* rightInorder = inorder + leftNum + 1;
// 4.根据中序遍历数组左右数组的各子大小切割前序遍历数组。也分为左右数组
int* leftPreorder = preorder+1;
int* rightPreorder = preorder + 1 + leftNum;
// 5.递归进入左右数组,将返回的结果作为根结点的左右孩子
root->left = buildTree(leftPreorder, leftNum, leftInorder, leftNum);
root->right = buildTree(rightPreorder, rightNum, rightInorder, rightNum);
// 6.返回根节点
return root;
}
```
-----------------------
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
* B站视频[代码随想录](https://space.bilibili.com/525438321)
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码.jpg width=450> </img></div>