mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2026-02-02 18:39:09 +08:00
266 lines
9.0 KiB
Markdown
266 lines
9.0 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
|
||
|
||
> 这不仅仅是一道好题,也展现出计算机的思考方式
|
||
|
||
# 150. 逆波兰表达式求值
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/evaluate-reverse-polish-notation/)
|
||
|
||
根据 逆波兰表示法,求表达式的值。
|
||
|
||
有效的运算符包括 + , - , * , / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
|
||
|
||
说明:
|
||
|
||
整数除法只保留整数部分。
|
||
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
|
||
|
||
|
||
示例 1:
|
||
* 输入: ["2", "1", "+", "3", " * "]
|
||
* 输出: 9
|
||
* 解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
|
||
|
||
示例 2:
|
||
* 输入: ["4", "13", "5", "/", "+"]
|
||
* 输出: 6
|
||
* 解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
|
||
|
||
示例 3:
|
||
* 输入: ["10", "6", "9", "3", "+", "-11", " * ", "/", " * ", "17", "+", "5", "+"]
|
||
|
||
* 输出: 22
|
||
|
||
* 解释:该算式转化为常见的中缀算术表达式为:
|
||
|
||
```
|
||
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
|
||
= ((10 * (6 / (12 * -11))) + 17) + 5
|
||
= ((10 * (6 / -132)) + 17) + 5
|
||
= ((10 * 0) + 17) + 5
|
||
= (0 + 17) + 5
|
||
= 17 + 5
|
||
= 22
|
||
```
|
||
|
||
|
||
逆波兰表达式:是一种后缀表达式,所谓后缀就是指算符写在后面。
|
||
|
||
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
|
||
|
||
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
|
||
|
||
逆波兰表达式主要有以下两个优点:
|
||
|
||
* 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
|
||
|
||
* 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
|
||
|
||
# 思路
|
||
|
||
在上一篇文章中[1047.删除字符串中的所有相邻重复项](https://programmercarl.com/1047.删除字符串中的所有相邻重复项.html)提到了 递归就是用栈来实现的。
|
||
|
||
所以**栈与递归之间在某种程度上是可以转换的!** 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。
|
||
|
||
那么来看一下本题,**其实逆波兰表达式相当于是二叉树中的后序遍历**。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。
|
||
|
||
但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后续遍历的方式把二叉树序列化了,就可以了。
|
||
|
||
在进一步看,本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么**这岂不就是一个相邻字符串消除的过程,和[1047.删除字符串中的所有相邻重复项](https://programmercarl.com/1047.删除字符串中的所有相邻重复项.html)中的对对碰游戏是不是就非常像了。**
|
||
|
||
如动画所示:
|
||

|
||
|
||
相信看完动画大家应该知道,这和[1047. 删除字符串中的所有相邻重复项](https://programmercarl.com/1047.删除字符串中的所有相邻重复项.html)是差不错的,只不过本题不要相邻元素做消除了,而是做运算!
|
||
|
||
C++代码如下:
|
||
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int evalRPN(vector<string>& tokens) {
|
||
stack<int> st;
|
||
for (int i = 0; i < tokens.size(); i++) {
|
||
if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
|
||
int num1 = st.top();
|
||
st.pop();
|
||
int num2 = st.top();
|
||
st.pop();
|
||
if (tokens[i] == "+") st.push(num2 + num1);
|
||
if (tokens[i] == "-") st.push(num2 - num1);
|
||
if (tokens[i] == "*") st.push(num2 * num1);
|
||
if (tokens[i] == "/") st.push(num2 / num1);
|
||
} else {
|
||
st.push(stoi(tokens[i]));
|
||
}
|
||
}
|
||
int result = st.top();
|
||
st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
# 题外话
|
||
|
||
我们习惯看到的表达式都是中缀表达式,因为符合我们的习惯,但是中缀表达式对于计算机来说就不是很友好了。
|
||
|
||
例如:4 + 13 / 5,这就是中缀表达式,计算机从左到右去扫描的话,扫到13,还要判断13后面是什么运算法,还要比较一下优先级,然后13还和后面的5做运算,做完运算之后,还要向前回退到 4 的位置,继续做加法,你说麻不麻烦!
|
||
|
||
那么将中缀表达式,转化为后缀表达式之后:["4", "13", "5", "/", "+"] ,就不一样了,计算机可以利用栈里顺序处理,不需要考虑优先级了。也不用回退了, **所以后缀表达式对计算机来说是非常友好的。**
|
||
|
||
可以说本题不仅仅是一道好题,也展现出计算机的思考方式。
|
||
|
||
在1970年代和1980年代,惠普在其所有台式和手持式计算器中都使用了RPN(后缀表达式),直到2020年代仍在某些模型中使用了RPN。
|
||
|
||
参考维基百科如下:
|
||
|
||
> During the 1970s and 1980s, Hewlett-Packard used RPN in all of their desktop and hand-held calculators, and continued to use it in some models into the 2020s.
|
||
|
||
|
||
|
||
|
||
# 其他语言版本
|
||
|
||
java:
|
||
|
||
```Java
|
||
class Solution {
|
||
public int evalRPN(String[] tokens) {
|
||
Deque<Integer> stack = new LinkedList();
|
||
for (int i = 0; i < tokens.length; ++i) {
|
||
if ("+".equals(tokens[i])) { // leetcode 内置jdk的问题,不能使用==判断字符串是否相等
|
||
stack.push(stack.pop() + stack.pop()); // 注意 - 和/ 需要特殊处理
|
||
} else if ("-".equals(tokens[i])) {
|
||
stack.push(-stack.pop() + stack.pop());
|
||
} else if ("*".equals(tokens[i])) {
|
||
stack.push(stack.pop() * stack.pop());
|
||
} else if ("/".equals(tokens[i])) {
|
||
int temp1 = stack.pop();
|
||
int temp2 = stack.pop();
|
||
stack.push(temp2 / temp1);
|
||
} else {
|
||
stack.push(Integer.valueOf(tokens[i]));
|
||
}
|
||
}
|
||
return stack.pop();
|
||
}
|
||
}
|
||
```
|
||
|
||
Go:
|
||
```Go
|
||
func evalRPN(tokens []string) int {
|
||
stack := []int{}
|
||
for _, token := range tokens {
|
||
val, err := strconv.Atoi(token)
|
||
if err == nil {
|
||
stack = append(stack, val)
|
||
} else {
|
||
num1, num2 := stack[len(stack)-2], stack[(len(stack))-1]
|
||
stack = stack[:len(stack)-2]
|
||
switch token {
|
||
case "+":
|
||
stack = append(stack, num1+num2)
|
||
case "-":
|
||
stack = append(stack, num1-num2)
|
||
case "*":
|
||
stack = append(stack, num1*num2)
|
||
case "/":
|
||
stack = append(stack, num1/num2)
|
||
}
|
||
}
|
||
}
|
||
return stack[0]
|
||
}
|
||
```
|
||
|
||
javaScript:
|
||
|
||
```js
|
||
|
||
/**
|
||
* @param {string[]} tokens
|
||
* @return {number}
|
||
*/
|
||
var evalRPN = function(tokens) {
|
||
const s = new Map([
|
||
["+", (a, b) => a * 1 + b * 1],
|
||
["-", (a, b) => b - a],
|
||
["*", (a, b) => b * a],
|
||
["/", (a, b) => (b / a) | 0]
|
||
]);
|
||
const stack = [];
|
||
for (const i of tokens) {
|
||
if(!s.has(i)) {
|
||
stack.push(i);
|
||
continue;
|
||
}
|
||
stack.push(s.get(i)(stack.pop(),stack.pop()))
|
||
}
|
||
return stack.pop();
|
||
};
|
||
```
|
||
|
||
python3
|
||
|
||
```python
|
||
class Solution:
|
||
def evalRPN(self, tokens: List[str]) -> int:
|
||
stack = []
|
||
for item in tokens:
|
||
if item not in {"+", "-", "*", "/"}:
|
||
stack.append(item)
|
||
else:
|
||
first_num, second_num = stack.pop(), stack.pop()
|
||
stack.append(
|
||
int(eval(f'{second_num} {item} {first_num}')) # 第一个出来的在运算符后面
|
||
)
|
||
return int(stack.pop()) # 如果一开始只有一个数,那么会是字符串形式的
|
||
|
||
```
|
||
|
||
Swift:
|
||
```Swift
|
||
func evalRPN(_ tokens: [String]) -> Int {
|
||
var stack = [Int]()
|
||
for c in tokens {
|
||
let v = Int(c)
|
||
if let num = v {
|
||
// 遇到数字直接入栈
|
||
stack.append(num)
|
||
} else {
|
||
// 遇到运算符, 取出栈顶两元素计算, 结果压栈
|
||
var res: Int = 0
|
||
let num2 = stack.popLast()!
|
||
let num1 = stack.popLast()!
|
||
switch c {
|
||
case "+":
|
||
res = num1 + num2
|
||
case "-":
|
||
res = num1 - num2
|
||
case "*":
|
||
res = num1 * num2
|
||
case "/":
|
||
res = num1 / num2
|
||
default:
|
||
break
|
||
}
|
||
stack.append(res)
|
||
}
|
||
}
|
||
return stack.last!
|
||
}
|
||
```
|
||
|
||
-----------------------
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>
|