3.4 KiB
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心
题目的时候,很多同学会陷入一个误区,就是以为把状态转移公式背下来,照葫芦画瓢改改,就开始写代码,甚至把题目AC之后,都不太清楚dp[i]表示的是什么。
这就是一种朦胧的状态,然后就把题给过了,遇到稍稍难一点的,可能直接就不会了,然后看题解,然后继续照葫芦画瓢陷入这种恶性循环中。
关于状态转移公式,
对于动态规划问题,我将拆解为如下四步曲,这四步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组以及下标的含义
- dp数组如何初始化
- 确定递推公式
- 确定遍历顺序
后面的讲解中我都是围绕着这四个点来经行讲解。
可能刷过动态规划题目的同学可能都知道递推公式的重要性,感觉确定了递推公式这道题目就解出来了。
其实 确定递推公式 仅仅是解题里的一步而且, dp数组的初始化 以及确定遍历顺序,都非常重要,
很多同学搞不清楚dp数组应该如何初始化,或者遍历的顺序,以至于记下来公式,但写的程序怎么改都通过不了。
动态规划如何debug
平时我自己写的时候也经常出问题,找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!
背包三讲
背包九讲其实看起来还是有点费劲的,而且都是伪代码理解起来吃力
完全背包
有N 种物品和一个容量为V 的背包,每种物品都有无限件可用。放入第i种 物品的耗费的空间是Ci ,得到的价值是Wi 。求解:将哪些物品装入背包,可使 这些物品的耗费的空间总和不超过背包容量,且价值总和最大。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件
首先想想为什么01背包中要按照v递减的次序来 循环。让v递减是为了保证第i次循环中的状态F [i, v]是由状态F [i − 1, v − Ci]递 推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入 第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果F [i − 1, v − Ci]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加 选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结 果F [i, v − Ci],所以就可以并且必须采用v递增的顺序循环。这就是这个简单的 程序为何成立的道理。
值得一提的是,上面的伪代码中两层for循环的次序可以颠倒。这个结论有可能会带来算法时间常数上的优化。(可能说的就是组合或者排列了)
多重背包
有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费 的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略 微一改即可。
总结
后台回复:背包九讲 就可以获得pdf