Files
leetcode-master/problems/背包问题理论基础完全背包.md
youngyangyang04 d20b6cefd2 更新底部栏
2021-08-10 22:04:36 +08:00

353 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<p align="center">
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
</p>
<p align="center"><strong>欢迎大家<a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
# 动态规划:关于完全背包,你该了解这些!
## 完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i]得到的价值是value[i] 。**每件物品都有无限个(也就是可以放入背包多次)**,求解将哪些物品装入背包里物品价值总和最大。
**完全背包和01背包问题唯一不同的地方就是每种物品有无限件**
同样leetcode上没有纯完全背包问题都是需要完全背包的各种应用需要转化成完全背包问题所以我这里还是以纯完全背包问题进行讲解理论和原理。
在下面的讲解中,我依然举这个例子:
背包最大重量为4。
物品为:
| | 重量 | 价值 |
| --- | --- | --- |
| 物品0 | 1 | 15 |
| 物品1 | 3 | 20 |
| 物品2 | 4 | 30 |
**每件商品都有无限个!**
问背包能背的物品最大价值是多少?
01背包和完全背包唯一不同就是体现在遍历顺序上所以本文就不去做动规五部曲了我们直接针对遍历顺序经行分析
关于01背包我如下两篇已经进行深入分析了
* [动态规划关于01背包问题你该了解这些](https://mp.weixin.qq.com/s/FwIiPPmR18_AJO5eiidT6w)
* [动态规划关于01背包问题你该了解这些滚动数组](https://mp.weixin.qq.com/s/M4uHxNVKRKm5HPjkNZBnFA)
首先在回顾一下01背包的核心代码
```
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
```
我们知道01背包内嵌的循环是从大到小遍历为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
```C++
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j < bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
```
至于为什么,我在[动态规划关于01背包问题你该了解这些滚动数组](https://mp.weixin.qq.com/s/M4uHxNVKRKm5HPjkNZBnFA)中也做了讲解。
dp状态图如下
![动态规划-完全背包](https://img-blog.csdnimg.cn/20210126104510106.jpg)
相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。
**其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?**
这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?
难道就不能遍历背包容量在外层,遍历物品在内层?
看过这两篇的话:
* [动态规划关于01背包问题你该了解这些](https://mp.weixin.qq.com/s/FwIiPPmR18_AJO5eiidT6w)
* [动态规划关于01背包问题你该了解这些滚动数组](https://mp.weixin.qq.com/s/M4uHxNVKRKm5HPjkNZBnFA)
就知道了01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了一位dp数组的两个for循环先后循序一定是先遍历物品再遍历背包容量。
**在完全背包中对于一维dp数组来说其实两个for循环嵌套顺序同样无所谓**
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
![动态规划-完全背包1](https://img-blog.csdnimg.cn/20210126104529605.jpg)
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
![动态规划-完全背包2](https://code-thinking-1253855093.file.myqcloud.com/pics/20210729234011.png)
看了这两个图大家就会理解完全背包中两个for循环的先后循序都不影响计算dp[j]所需要的值这个值就是下标j之前所对应的dp[j])。
先遍历被背包在遍历物品,代码如下:
```C++
// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}
```
## C++测试代码
完整的C++测试代码如下:
```C++
// 先遍历物品,在遍历背包
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
```
```C++
// 先遍历背包,再遍历物品
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
```
## 总结
细心的同学可能发现,**全文我说的都是对于纯完全背包问题其for循环的先后循环是可以颠倒的**
但如果题目稍稍有点变化,就会体现在遍历顺序上。
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了而leetcode上的题目都是这种稍有变化的类型。
这个区别我将在后面讲解具体leetcode题目中给大家介绍因为这块如果不结合具题目单纯的介绍原理估计很多同学会越看越懵
别急,下一篇就是了!哈哈
最后,**又可以出一道面试题了就是纯完全背包要求先用二维dp数组实现然后再用一维dp数组实现最后在问两个for循环的先后是否可以颠倒为什么**
这个简单的完全背包问题,估计就可以难住不少候选人了。
## 其他语言版本
Java
```java
//先遍历物品,再遍历背包
private static void testCompletePack(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 0; i < weight.length; i++){
for (int j = 1; j <= bagWeight; j++){
if (j - weight[i] >= 0){
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
//先遍历背包,再遍历物品
private static void testCompletePackAnotherWay(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 1; i <= bagWeight; i++){
for (int j = 0; j < weight.length; j++){
if (i - weight[j] >= 0){
dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
}
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
```
Python
```python3
# 先遍历物品,再遍历背包
def test_complete_pack1():
weight = [1, 3, 4]
value = [15, 20, 30]
bag_weight = 4
dp = [0]*(bag_weight + 1)
for i in range(len(weight)):
for j in range(weight[i], bag_weight + 1):
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bag_weight])
# 先遍历背包,再遍历物品
def test_complete_pack2():
weight = [1, 3, 4]
value = [15, 20, 30]
bag_weight = 4
dp = [0]*(bag_weight + 1)
for j in range(bag_weight + 1):
for i in range(len(weight)):
if j >= weight[i]: dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bag_weight])
if __name__ == '__main__':
test_complete_pack1()
test_complete_pack2()
```
Go
```go
// test_CompletePack1 先遍历物品, 在遍历背包
func test_CompletePack1(weight, value []int, bagWeight int) int {
// 定义dp数组 和初始化
dp := make([]int, bagWeight+1)
// 遍历顺序
for i := 0; i < len(weight); i++ {
// 正序会多次添加 value[i]
for j := weight[i]; j <= bagWeight; j++ {
// 推导公式
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
// debug
//fmt.Println(dp)
}
}
return dp[bagWeight]
}
// test_CompletePack2 先遍历背包, 在遍历物品
func test_CompletePack2(weight, value []int, bagWeight int) int {
// 定义dp数组 和初始化
dp := make([]int, bagWeight+1)
// 遍历顺序
// j从0 开始
for j := 0; j <= bagWeight; j++ {
for i := 0; i < len(weight); i++ {
if j >= weight[i] {
// 推导公式
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
}
// debug
//fmt.Println(dp)
}
}
return dp[bagWeight]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func main() {
weight := []int{1, 3, 4}
price := []int{15, 20, 30}
fmt.Println(test_CompletePack1(weight, price, 4))
fmt.Println(test_CompletePack2(weight, price, 4))
}
```
Javascript:
```Javascript
// 先遍历物品,再遍历背包容量
function test_completePack1() {
let weight = [1, 3, 5]
let value = [15, 20, 30]
let bagWeight = 4
let dp = new Array(bagWeight + 1).fill(0)
for(let i = 0; i <= weight.length; i++) {
for(let j = weight[i]; j <= bagWeight; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
}
}
console.log(dp)
}
// 先遍历背包容量,再遍历物品
function test_completePack2() {
let weight = [1, 3, 5]
let value = [15, 20, 30]
let bagWeight = 4
let dp = new Array(bagWeight + 1).fill(0)
for(let j = 0; j <= bagWeight; j++) {
for(let i = 0; i < weight.length; i++) {
if (j >= weight[i]) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
}
}
}
console.log(2, dp);
}
```
-----------------------
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
* B站视频[代码随想录](https://space.bilibili.com/525438321)
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码.jpg width=450> </img></div>