Merge pull request #245 from nannxnann/master

Request for translate chapter 6.4
This commit is contained in:
Dongliang Mu
2022-07-18 23:00:00 -04:00
committed by GitHub
2 changed files with 28 additions and 28 deletions

View File

@@ -75,7 +75,7 @@
|├ [6.1](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-1.md)|[@keltoy](https://github.com/keltoy)|已完成|
|├ [6.2](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-2.md)|[@keltoy](https://github.com/keltoy)|已完成|
|├ [6.3](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-3.md)|[@huxq](https://github.com/huxq)|已完成|
|├ [6.4](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-4.md)||未开始|
|├ [6.4](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-4.md)|[@nannxnann](https://github.com/nannxnann)|正在进行|
|├ [6.5](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-5.md)||未开始|
|└ [6.6](https://github.com/MintCN/linux-insides-zh/blob/master/SyncPrim/linux-sync-6.md)||未开始|
| 7. [Memory management](https://github.com/MintCN/linux-insides-zh/tree/master/MM)||未开始|

View File

@@ -4,16 +4,16 @@ Synchronization primitives in the Linux kernel. Part 4.
Introduction
--------------------------------------------------------------------------------
This is the fourth part of the [chapter](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html) which describes synchronization primitives in the Linux kernel and in the previous parts we finished to consider different types [spinlocks](https://en.wikipedia.org/wiki/Spinlock) and [semaphore](https://en.wikipedia.org/wiki/Semaphore_%28programming%29) synchronization primitives. We will continue to learn [synchronization primitives](https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29) in this part and consider yet another one which is called - [mutex](https://en.wikipedia.org/wiki/Mutual_exclusion) which is stands for `MUTual EXclusion`.
This is the fourth part of the [chapter](https://0xax.gitbook.io/linux-insides/summary/syncprim) which describes synchronization primitives in the Linux kernel and in the previous parts we finished to consider different types [spinlocks](https://en.wikipedia.org/wiki/Spinlock) and [semaphore](https://en.wikipedia.org/wiki/Semaphore_%28programming%29) synchronization primitives. We will continue to learn [synchronization primitives](https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29) in this part and consider yet another one which is called - [mutex](https://en.wikipedia.org/wiki/Mutual_exclusion) which is stands for `MUTual EXclusion`.
As in all previous parts of this [book](https://0xax.gitbooks.io/linux-insides/content), we will try to consider this synchronization primitive from the theoretical side and only than we will consider [API](https://en.wikipedia.org/wiki/Application_programming_interface) provided by the Linux kernel to manipulate with `mutexes`.
As in all previous parts of this [book](https://github.com/0xAX/linux-insides/blob/master/SUMMARY.md), we will try to consider this synchronization primitive from the theoretical side and only than we will consider [API](https://en.wikipedia.org/wiki/Application_programming_interface) provided by the Linux kernel to manipulate with `mutexes`.
So, let's start.
Concept of `mutex`
--------------------------------------------------------------------------------
We already familiar with the [semaphore](https://en.wikipedia.org/wiki/Semaphore_%28programming%29) synchronization primitive from the previous [part](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html). It represented by the:
We already familiar with the [semaphore](https://en.wikipedia.org/wiki/Semaphore_%28programming%29) synchronization primitive from the previous [part](https://0xax.gitbook.io/linux-insides/summary/syncprim/linux-sync-3). It represented by the:
```C
struct semaphore {
@@ -47,9 +47,9 @@ struct mutex {
};
```
structure in the Linux kernel. This structure is defined in the [include/linux/mutex.h](https://github.com/torvalds/linux/blob/master/include/linux/mutex.h) header file and contains similar to the `semaphore` structure set of fields. The first field of the `mutex` structure is - `count`. Value of this field represents state of a `mutex`. In a case when the value of the `count` field is `1`, a `mutex` is in `unlocked` state. When the value of the `count` field is `zero`, a `mutex` is in the `locked` state. Additionally value of the `count` field may be `negative`. In this case a `mutex` is in the `locked` state and has possible waiters.
structure in the Linux kernel. This structure is defined in the [include/linux/mutex.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mutex.h) header file and contains similar to the `semaphore` structure set of fields. The first field of the `mutex` structure is - `count`. Value of this field represents state of a `mutex`. In a case when the value of the `count` field is `1`, a `mutex` is in `unlocked` state. When the value of the `count` field is `zero`, a `mutex` is in the `locked` state. Additionally value of the `count` field may be `negative`. In this case a `mutex` is in the `locked` state and has possible waiters.
The next two fields of the `mutex` structure - `wait_lock` and `wait_list` are [spinlock](https://github.com/torvalds/linux/blob/master/include/linux/mutex.h) for the protection of a `wait queue` and list of waiters which represents this `wait queue` for a certain lock. As you may notice, the similarity of the `mutex` and `semaphore` structures ends. Remaining fields of the `mutex` structure, as we may see depends on different configuration options of the Linux kernel.
The next two fields of the `mutex` structure - `wait_lock` and `wait_list` are [spinlock](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mutex.h) for the protection of a `wait queue` and list of waiters which represents this `wait queue` for a certain lock. As you may notice, the similarity of the `mutex` and `semaphore` structures ends. Remaining fields of the `mutex` structure, as we may see depends on different configuration options of the Linux kernel.
The first field - `owner` represents [process](https://en.wikipedia.org/wiki/Process_%28computing%29) which acquired a lock. As we may see, existence of this field in the `mutex` structure depends on the `CONFIG_DEBUG_MUTEXES` or `CONFIG_MUTEX_SPIN_ON_OWNER` kernel configuration options. Main point of this field and the next `osq` fields is support of `optimistic spinning` which we will see later. The last two fields - `magic` and `dep_map` are used only in [debugging](https://en.wikipedia.org/wiki/Debugging) mode. The `magic` field is to storing a `mutex` related information for debugging and the second field - `lockdep_map` is for [lock validator](https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt) of the Linux kernel.
@@ -77,7 +77,7 @@ struct mutex_waiter {
};
```
structure from the [include/linux/mutex.h](https://github.com/torvalds/linux/blob/master/include/linux/mutex.h) header file and will be sleep. Before we will consider [API](https://en.wikipedia.org/wiki/Application_programming_interface) which is provided by the Linux kernel for manipulation with `mutexes`, let's consider the `mutex_waiter` structure. If you have read the [previous part](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html) of this chapter, you may notice that the `mutex_waiter` structure is similar to the `semaphore_waiter` structure from the [kernel/locking/semaphore.c](https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c) source code file:
structure from the [include/linux/mutex.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mutex.h) header file and will be sleep. Before we will consider [API](https://en.wikipedia.org/wiki/Application_programming_interface) which is provided by the Linux kernel for manipulation with `mutexes`, let's consider the `mutex_waiter` structure. If you have read the [previous part](https://0xax.gitbook.io/linux-insides/summary/syncprim/linux-sync-3) of this chapter, you may notice that the `mutex_waiter` structure is similar to the `semaphore_waiter` structure from the [kernel/locking/semaphore.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/semaphore.c) source code file:
```C
struct semaphore_waiter {
@@ -94,7 +94,7 @@ Now we know what is it `mutex` and how it is represented the Linux kernel. In th
Mutex API
--------------------------------------------------------------------------------
Ok, in the previous paragraph we knew what is it `mutex` synchronization primitive and saw the `mutex` structure which represents `mutex` in the Linux kernel. Now it's time to consider [API](https://en.wikipedia.org/wiki/Application_programming_interface) for manipulation of mutexes. Description of the `mutex` API is located in the [include/linux/mutex.h](https://github.com/torvalds/linux/blob/master/include/linux/mutex.h) header file. As always, before we will consider how to acquire and release a `mutex`, we need to know how to initialize it.
Ok, in the previous paragraph we knew what is it `mutex` synchronization primitive and saw the `mutex` structure which represents `mutex` in the Linux kernel. Now it's time to consider [API](https://en.wikipedia.org/wiki/Application_programming_interface) for manipulation of mutexes. Description of the `mutex` API is located in the [include/linux/mutex.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mutex.h) header file. As always, before we will consider how to acquire and release a `mutex`, we need to know how to initialize it.
There are two approaches to initialize a `mutex`. The first is to do it statically. For this purpose the Linux kernel provides following:
@@ -114,9 +114,9 @@ macro. Let's consider implementation of this macro. As we may see, the `DEFINE_M
}
```
This macro is defined in the [same](https://github.com/torvalds/linux/blob/master/include/linux/mutex.h) header file and as we may understand it initializes fields of the `mutex` structure the initial values. The `count` field get initialized with the `1` which represents `unlocked` state of a mutex. The `wait_lock` [spinlock](https://en.wikipedia.org/wiki/Spinlock) get initialized to the unlocked state and the last field `wait_list` to empty [doubly linked list](https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html).
This macro is defined in the [same](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mutex.h) header file and as we may understand it initializes fields of the `mutex` structure the initial values. The `count` field get initialized with the `1` which represents `unlocked` state of a mutex. The `wait_lock` [spinlock](https://en.wikipedia.org/wiki/Spinlock) get initialized to the unlocked state and the last field `wait_list` to empty [doubly linked list](https://0xax.gitbook.io/linux-insides/summary/datastructures/linux-datastructures-1).
The second approach allows us to initialize a `mutex` dynamically. To do this we need to call the `__mutex_init` function from the [kernel/locking/mutex.c](https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c) source code file. Actually, the `__mutex_init` function rarely called directly. Instead of the `__mutex_init`, the:
The second approach allows us to initialize a `mutex` dynamically. To do this we need to call the `__mutex_init` function from the [kernel/locking/mutex.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/mutex.c) source code file. Actually, the `__mutex_init` function rarely called directly. Instead of the `__mutex_init`, the:
```C
# define mutex_init(mutex) \
@@ -150,7 +150,7 @@ As we may see the `__mutex_init` function takes three arguments:
* `name` - name of mutex for debugging purpose;
* `key` - key for [lock validator](https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt).
At the beginning of the `__mutex_init` function, we may see initialization of the `mutex` state. We set it to `unlocked` state with the `atomic_set` function which atomically set the give variable to the given value. After this we may see initialization of the `spinlock` to the unlocked state which will protect `wait queue` of the `mutex` and initialization of the `wait queue` of the `mutex`. After this we clear owner of the `lock` and initialize optimistic queue by the call of the `osq_lock_init` function from the [include/linux/osq_lock.h](https://github.com/torvalds/linux/blob/master/include/linux/osq_lock.h) header file. This function just sets the tail of the optimistic queue to the unlocked state:
At the beginning of the `__mutex_init` function, we may see initialization of the `mutex` state. We set it to `unlocked` state with the `atomic_set` function which atomically set the give variable to the given value. After this we may see initialization of the `spinlock` to the unlocked state which will protect `wait queue` of the `mutex` and initialization of the `wait queue` of the `mutex`. After this we clear owner of the `lock` and initialize optimistic queue by the call of the `osq_lock_init` function from the [include/linux/osq_lock.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/osq_lock.h) header file. This function just sets the tail of the optimistic queue to the unlocked state:
```C
static inline bool osq_is_locked(struct optimistic_spin_queue *lock)
@@ -159,9 +159,9 @@ static inline bool osq_is_locked(struct optimistic_spin_queue *lock)
}
```
In the end of the `__mutex_init` function we may see the call of the `debug_mutex_init` function, but as I already wrote in previous parts of this [chapter](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html), we will not consider debugging related stuff in this chapter.
In the end of the `__mutex_init` function we may see the call of the `debug_mutex_init` function, but as I already wrote in previous parts of this [chapter](https://0xax.gitbook.io/linux-insides/summary/syncprim), we will not consider debugging related stuff in this chapter.
After the `mutex` structure is initialized, we may go ahead and will look at the `lock` and `unlock` API of `mutex` synchronization primitive. Implementation of `mutex_lock` and `mutex_unlock` functions located in the [kernel/locking/mutex.c](https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c) source code file. First of all let's start from the implementation of the `mutex_lock`. It looks:
After the `mutex` structure is initialized, we may go ahead and will look at the `lock` and `unlock` API of `mutex` synchronization primitive. Implementation of `mutex_lock` and `mutex_unlock` functions located in the [kernel/locking/mutex.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/mutex.c) source code file. First of all let's start from the implementation of the `mutex_lock`. It looks:
```C
void __sched mutex_lock(struct mutex *lock)
@@ -172,11 +172,11 @@ void __sched mutex_lock(struct mutex *lock)
}
```
We may see the call of the `might_sleep` macro from the [include/linux/kernel.h](https://github.com/torvalds/linux/blob/master/include/linux/kernel.h) header file at the beginning of the `mutex_lock` function. Implementation of this macro depends on the `CONFIG_DEBUG_ATOMIC_SLEEP` kernel configuration option and if this option is enabled, this macro just prints a stack trace if it was executed in [atomic](https://en.wikipedia.org/wiki/Linearizability) context. This macro is helper for debugging purposes. In other way this macro does nothing.
We may see the call of the `might_sleep` macro from the [include/linux/kernel.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/kernel.h) header file at the beginning of the `mutex_lock` function. Implementation of this macro depends on the `CONFIG_DEBUG_ATOMIC_SLEEP` kernel configuration option and if this option is enabled, this macro just prints a stack trace if it was executed in [atomic](https://en.wikipedia.org/wiki/Linearizability) context. This macro is helper for debugging purposes. In other way this macro does nothing.
After the `might_sleep` macro, we may see the call of the `__mutex_fastpath_lock` function. This function is architecture-specific and as we consider [x86_64](https://en.wikipedia.org/wiki/X86-64) architecture in this book, the implementation of the `__mutex_fastpath_lock` is located in the [arch/x86/include/asm/mutex_64.h](https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h) header file. As we may understand from the name of the `__mutex_fastpath_lock` function, this function will try to acquire lock in a fast path or in other words this function will try to decrement the value of the `count` of the given mutex.
After the `might_sleep` macro, we may see the call of the `__mutex_fastpath_lock` function. This function is architecture-specific and as we consider [x86_64](https://en.wikipedia.org/wiki/X86-64) architecture in this book, the implementation of the `__mutex_fastpath_lock` is located in the [arch/x86/include/asm/mutex_64.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/mutex_64.h) header file. As we may understand from the name of the `__mutex_fastpath_lock` function, this function will try to acquire lock in a fast path or in other words this function will try to decrement the value of the `count` of the given mutex.
Implementation of the `__mutex_fastpath_lock` function consists from two parts. The first part is [inline assembly](https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html) statement. Let's look at it:
Implementation of the `__mutex_fastpath_lock` function consists from two parts. The first part is [inline assembly](https://0xax.gitbook.io/linux-insides/summary/theory/linux-theory-3) statement. Let's look at it:
```C
asm_volatile_goto(LOCK_PREFIX " decl %0\n"
@@ -186,7 +186,7 @@ asm_volatile_goto(LOCK_PREFIX " decl %0\n"
: exit);
```
First of all, let's pay attention to the `asm_volatile_goto`. This macro is defined in the [include/linux/compiler-gcc.h](https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h) header file and just expands to the two inline assembly statements:
First of all, let's pay attention to the `asm_volatile_goto`. This macro is defined in the [include/linux/compiler-gcc.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/compiler-gcc.h) header file and just expands to the two inline assembly statements:
```C
#define asm_volatile_goto(x...) do { asm goto(x); asm (""); } while (0)
@@ -217,7 +217,7 @@ will be called after our inline assembly statement. The `fail_fn` is the second
mutex_set_owner(lock);
```
in the end of the `mutex_lock`. The `mutex_set_owner` function is defined in the [kernel/locking/mutex.h](https://github.com/torvalds/linux/blob/master/include/linux/mutex.h) header file and just sets owner of a lock to the current process:
in the end of the `mutex_lock`. The `mutex_set_owner` function is defined in the [kernel/locking/mutex.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mutex.h) header file and just sets owner of a lock to the current process:
```C
static inline void mutex_set_owner(struct mutex *lock)
@@ -226,7 +226,7 @@ static inline void mutex_set_owner(struct mutex *lock)
}
```
In other way, let's consider situation when a process which wants to acquire a lock is unable to do it, because another process already acquired the same lock. We already know that the `__mutex_lock_slowpath` function will be called in this case. Let's consider implementation of this function. This function is defined in the [kernel/locking/mutex.c](https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c) source code file and starts from the obtaining of the proper mutex by the mutex state given from the `__mutex_fastpath_lock` with the `container_of` macro:
In other way, let's consider situation when a process which wants to acquire a lock is unable to do it, because another process already acquired the same lock. We already know that the `__mutex_lock_slowpath` function will be called in this case. Let's consider implementation of this function. This function is defined in the [kernel/locking/mutex.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/mutex.c) source code file and starts from the obtaining of the proper mutex by the mutex state given from the `__mutex_fastpath_lock` with the `container_of` macro:
```C
__visible void __sched
@@ -239,7 +239,7 @@ __mutex_lock_slowpath(atomic_t *lock_count)
}
```
and call the `__mutex_lock_common` function with the obtained `mutex`. The `__mutex_lock_common` function starts from [preemtion](https://en.wikipedia.org/wiki/Preemption_%28computing%29) disabling until rescheduling:
and call the `__mutex_lock_common` function with the obtained `mutex`. The `__mutex_lock_common` function starts from [preemption](https://en.wikipedia.org/wiki/Preemption_%28computing%29) disabling until rescheduling:
```C
preempt_disable();
@@ -279,7 +279,7 @@ while (true) {
}
```
and try to acquire a lock. First of all we try to take current owner and if the owner exists (it may not exists in a case when a process already released a mutex) and we wait for it in the `mutex_spin_on_owner` function before the owner will release a lock. If new task with higher priority have appeared during wait of the lock owner, we break the loop and go to sleep. In other case, the process already may release a lock, so we try to acquire a lock with the `mutex_try_to_acquired`. If this operation finished successfully, we set new owner for the given mutex, removes ourself from the `MCS` wait queue and exit from the `mutex_optimistic_spin` function. At this state a lock will be acquired by a process and we enable [preemtion](https://en.wikipedia.org/wiki/Preemption_%28computing%29) and exit from the `__mutex_lock_common` function:
and try to acquire a lock. First of all we try to take current owner and if the owner exists (it may not exists in a case when a process already released a mutex) and we wait for it in the `mutex_spin_on_owner` function before the owner will release a lock. If new task with higher priority have appeared during wait of the lock owner, we break the loop and go to sleep. In other case, the process already may release a lock, so we try to acquire a lock with the `mutex_try_to_acquired`. If this operation finished successfully, we set new owner for the given mutex, removes ourself from the `MCS` wait queue and exit from the `mutex_optimistic_spin` function. At this state a lock will be acquired by a process and we enable [preemption](https://en.wikipedia.org/wiki/Preemption_%28computing%29) and exit from the `__mutex_lock_common` function:
```C
if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
@@ -348,7 +348,7 @@ for (;;) {
where try to acquire a lock again and exit if this operation was successful. Yes, we try to acquire a lock again right after unsuccessful try before the loop. We need to do it to make sure that we get a wakeup once a lock will be unlocked. Besides this, it allows us to acquire a lock after sleep. In other case we check the current process for pending [signals](https://en.wikipedia.org/wiki/Unix_signal) and exit if the process was interrupted by a `signal` during wait for a lock acquisition. In the end of loop we didn't acquire a lock, so we set the task state for `TASK_UNINTERRUPTIBLE` and go to sleep with call of the `schedule_preempt_disabled` function.
That's all. We have considered all three possible paths through which a process may pass when it will wan to acquire a lock. Now let's consider how `mutex_unlock` is implemented. When the `mutex_unlock` will be called by a process which wants to release a lock, the `__mutex_fastpath_unlock` will be called from the [arch/x86/include/asm/mutex_64.h](https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h) header file:
That's all. We have considered all three possible paths through which a process may pass when it will want to acquire a lock. Now let's consider how `mutex_unlock` is implemented. When the `mutex_unlock` will be called by a process which wants to release a lock, the `__mutex_fastpath_unlock` will be called from the [arch/x86/include/asm/mutex_64.h](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/mutex_64.h) header file:
```C
void __sched mutex_unlock(struct mutex *lock)
@@ -403,7 +403,7 @@ That's all. We have considered main `API` for manipulation with `mutexes`: `mute
* `mutex_lock_killable`;
* `mutex_trylock`.
and corresponding versions of `unlock` prefixed functions. This part will not describe this `API`, because it is similar to corresponding `API` of `semaphores`. More about it you may read in the [previous part](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html).
and corresponding versions of `unlock` prefixed functions. This part will not describe this `API`, because it is similar to corresponding `API` of `semaphores`. More about it you may read in the [previous part](https://0xax.gitbook.io/linux-insides/summary/syncprim/linux-sync-3).
That's all.
@@ -412,7 +412,7 @@ Conclusion
This is the end of the fourth part of the [synchronization primitives](https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29) chapter in the Linux kernel. In this part we met with new synchronization primitive which is called - `mutex`. From the theoretical side, this synchronization primitive very similar on a [semaphore](https://en.wikipedia.org/wiki/Semaphore_%28programming%29). Actually, `mutex` represents binary semaphore. But its implementation differs from the implementation of `semaphore` in the Linux kernel. In the next part we will continue to dive into synchronization primitives in the Linux kernel.
If you have questions or suggestions, feel free to ping me in twitter [0xAX](https://twitter.com/0xAX), drop me [email](anotherworldofworld@gmail.com) or just create [issue](https://github.com/0xAX/linux-insides/issues/new).
If you have questions or suggestions, feel free to ping me in twitter [0xAX](https://twitter.com/0xAX), drop me [email](mailto:anotherworldofworld@gmail.com) or just create [issue](https://github.com/0xAX/linux-insides/issues/new).
**Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please send me PR to [linux-insides](https://github.com/0xAX/linux-insides).**
@@ -429,12 +429,12 @@ Links
* [lock validator](https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt)
* [Atomic](https://en.wikipedia.org/wiki/Linearizability)
* [MCS lock](http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf)
* [Doubly linked list](https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html)
* [Doubly linked list](https://0xax.gitbook.io/linux-insides/summary/datastructures/linux-datastructures-1)
* [x86_64](https://en.wikipedia.org/wiki/X86-64)
* [Inline assembly](https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html)
* [Inline assembly](https://0xax.gitbook.io/linux-insides/summary/theory/linux-theory-3)
* [Memory barrier](https://en.wikipedia.org/wiki/Memory_barrier)
* [Lock instruction](http://x86.renejeschke.de/html/file_module_x86_id_159.html)
* [JNS instruction](http://unixwiz.net/techtips/x86-jumps.html)
* [preemtion](https://en.wikipedia.org/wiki/Preemption_%28computing%29)
* [preemption](https://en.wikipedia.org/wiki/Preemption_%28computing%29)
* [Unix signals](https://en.wikipedia.org/wiki/Unix_signal)
* [Previous part](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html)
* [Previous part](https://0xax.gitbook.io/linux-insides/summary/syncprim/linux-sync-3)