mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-08 13:06:57 +08:00
60
sieve_of_Eratosthenes.cpp
Normal file
60
sieve_of_Eratosthenes.cpp
Normal file
@@ -0,0 +1,60 @@
|
||||
/*
|
||||
* Sieve of Eratosthenes is an algorithm to find the primes
|
||||
* that is between 2 to N (as defined in main).
|
||||
*
|
||||
* Time Complexity : O(N)
|
||||
* Space Complexity : O(N)
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
#define MAX 10000000
|
||||
|
||||
int primes[MAX];
|
||||
|
||||
|
||||
/*
|
||||
* This is the function that finds the primes and eliminates
|
||||
* the multiples.
|
||||
*/
|
||||
void sieve(int N)
|
||||
{
|
||||
primes[0] = 1;
|
||||
primes[1] = 1;
|
||||
for(int i=2;i<=N;i++)
|
||||
{
|
||||
if(primes[i] == 1) continue;
|
||||
for(int j=i+i;j<=N;j+=i)
|
||||
primes[j] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This function prints out the primes to STDOUT
|
||||
*/
|
||||
void print(int N)
|
||||
{
|
||||
for(int i=0;i<=N;i++)
|
||||
if(primes[i] == 0)
|
||||
cout << i << ' ';
|
||||
cout << '\n';
|
||||
}
|
||||
|
||||
/*
|
||||
* NOTE: This function is important for the
|
||||
* initialization of the array.
|
||||
*/
|
||||
void init()
|
||||
{
|
||||
for(int i=0;i<MAX;i++)
|
||||
primes[i] = 0;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int N = 100;
|
||||
init();
|
||||
sieve(N);
|
||||
print(N);
|
||||
}
|
||||
116
ternary_search.cpp
Normal file
116
ternary_search.cpp
Normal file
@@ -0,0 +1,116 @@
|
||||
/*
|
||||
* This is a divide and conquer algorithm.
|
||||
* It does this by dividing the search space by 3 parts and
|
||||
* using its property (usually monotonic property) to find
|
||||
* the desired index.
|
||||
*
|
||||
* Time Complexity : O(log3 n)
|
||||
* Space Complexity : O(1) (without the array)
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
/*
|
||||
* The absolutePrecision can be modified to fit preference but
|
||||
* it is recommended to not go lower than 10 due to errors that
|
||||
* may occur.
|
||||
*
|
||||
* The value of _target should be decided or can be decided later
|
||||
* by using the variable of the function.
|
||||
*/
|
||||
|
||||
#define _target 10
|
||||
#define absolutePrecision 10
|
||||
#define MAX 10000000
|
||||
|
||||
int N = 21;
|
||||
int A[MAX] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,4,10};
|
||||
|
||||
/*
|
||||
* get_input function is to receive input from standard IO
|
||||
*/
|
||||
void get_input()
|
||||
{
|
||||
// TODO: Get input from STDIO or write input to memory as done above.
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is the iterative method of the ternary search which returns the index of the element.
|
||||
*/
|
||||
int it_ternary_search(int left, int right, int A[],int target)
|
||||
{
|
||||
while (1)
|
||||
{
|
||||
if(left<right)
|
||||
{
|
||||
if(right-left < absolutePrecision)
|
||||
{
|
||||
for(int i=left;i<=right;i++)
|
||||
if(A[i] == target) return i;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
int oneThird = (left+right)/3+1;
|
||||
int twoThird = (left+right)*2/3+1;
|
||||
|
||||
if(A[oneThird] == target) return oneThird;
|
||||
else if(A[twoThird] == target) return twoThird;
|
||||
|
||||
else if(target > A[twoThird]) left = twoThird+1;
|
||||
else if(target < A[oneThird]) right = oneThird-1;
|
||||
|
||||
else left = oneThird+1, right = twoThird-1;
|
||||
}
|
||||
else return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the recursive method of the ternary search which returns the index of the element.
|
||||
*/
|
||||
int rec_ternary_search(int left, int right, int A[],int target)
|
||||
{
|
||||
if(left<right)
|
||||
{
|
||||
if(right-left < absolutePrecision)
|
||||
{
|
||||
for(int i=left;i<=right;i++)
|
||||
if(A[i] == target) return i;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
int oneThird = (left+right)/3+1;
|
||||
int twoThird = (left+right)*2/3+1;
|
||||
|
||||
if(A[oneThird] == target) return oneThird;
|
||||
if(A[twoThird] == target) return twoThird;
|
||||
|
||||
if(target < A[oneThird]) return rec_ternary_search(left, oneThird-1, A, target);
|
||||
if(target > A[twoThird]) return rec_ternary_search(twoThird+1, right, A, target);
|
||||
|
||||
return rec_ternary_search(oneThird+1, twoThird-1, A, target);
|
||||
}
|
||||
else return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* ternary_search is a template function
|
||||
* You could either use it_ternary_search or rec_ternary_search according to preference.
|
||||
*/
|
||||
void ternary_search(int N,int A[],int target)
|
||||
{
|
||||
cout << it_ternary_search(0,N-1,A,target) << '\t';
|
||||
cout << rec_ternary_search(0,N-1,A,target) << '\t';
|
||||
cout << '\n';
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
get_input();
|
||||
ternary_search(N,A,_target);
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user