mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-13 23:46:33 +08:00
added kohonen self organizing map
This commit is contained in:
428
machine_learning/kohonen_som_trace.cpp
Normal file
428
machine_learning/kohonen_som_trace.cpp
Normal file
@@ -0,0 +1,428 @@
|
||||
/**
|
||||
* \file
|
||||
* \brief [Kohonen self organizing
|
||||
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (data tracing)
|
||||
*
|
||||
* This example implements a powerful self organizing map algorithm.
|
||||
* The algorithm creates a connected network of weights that closely
|
||||
* follows the given data points. This this creates a chain of nodes that
|
||||
* resembles the given input shape.
|
||||
*
|
||||
* \note This C++ version of the program is considerable slower than its [C
|
||||
* counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c)
|
||||
* \note The compiled code is much slower when compiled with MS Visual C++ 2019
|
||||
* than with GCC on windows
|
||||
*/
|
||||
#define _USE_MATH_DEFINES // required for MS Visual C++
|
||||
#include <algorithm>
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <valarray>
|
||||
#include <vector>
|
||||
#ifdef _OPENMP // check if OpenMP based parallellization is available
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Helper function to generate a random number in a given interval.
|
||||
* \n Steps:
|
||||
* 1. `r1 = rand() % 100` gets a random number between 0 and 99
|
||||
* 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
|
||||
* 3. scale and offset the random number to given range of \f$[a,b]\f$
|
||||
*
|
||||
* \param[in] a lower limit
|
||||
* \param[in] b upper limit
|
||||
* \returns random number in the range \f$[a,b]\f$
|
||||
*/
|
||||
double _random(double a, double b) {
|
||||
return ((b - a) * (std::rand() % 100) / 100.f) + a;
|
||||
}
|
||||
|
||||
/**
|
||||
* Save a given n-dimensional data martix to file.
|
||||
*
|
||||
* \param[in] fname filename to save in (gets overwriten without confirmation)
|
||||
* \param[in] X matrix to save
|
||||
* \returns 0 if all ok
|
||||
* \returns -1 if file creation failed
|
||||
*/
|
||||
int save_nd_data(const char *fname,
|
||||
const std::vector<std::valarray<double>> &X) {
|
||||
size_t num_points = X.size(); // number of rows
|
||||
size_t num_features = X[0].size(); // number of columns
|
||||
|
||||
std::ofstream fp;
|
||||
fp.open(fname);
|
||||
if (!fp.is_open()) {
|
||||
// error with opening file to write
|
||||
std::cerr << "Error opening file " << fname << "\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
// for each point in the array
|
||||
for (int i = 0; i < num_points; i++) {
|
||||
// for each feature in the array
|
||||
for (int j = 0; j < num_features; j++) {
|
||||
fp << X[i][j]; // print the feature value
|
||||
if (j < num_features - 1) // if not the last feature
|
||||
fp << ","; // suffix comma
|
||||
}
|
||||
if (i < num_points - 1) // if not the last row
|
||||
fp << "\n"; // start a new line
|
||||
}
|
||||
|
||||
fp.close();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update weights of the SOM using Kohonen algorithm
|
||||
*
|
||||
* \param[in] X data point
|
||||
* \param[in,out] W weights matrix
|
||||
* \param[in,out] D temporary vector to store distances
|
||||
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
|
||||
* \param[in] R neighborhood range
|
||||
*/
|
||||
void update_weights(const std::valarray<double> &x,
|
||||
std::vector<std::valarray<double>> *W,
|
||||
std::valarray<double> *D, double alpha, int R) {
|
||||
int j, k;
|
||||
int num_out = W->size(); // number of SOM output nodes
|
||||
int num_features = x.size(); // number of data features
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
// step 1: for each output point
|
||||
for (j = 0; j < num_out; j++) {
|
||||
// compute Euclidian distance of each output
|
||||
// point from the current sample
|
||||
(*D)[j] = (((*W)[j] - x) * ((*W)[j] - x)).sum();
|
||||
}
|
||||
|
||||
// step 2: get closest node i.e., node with snallest Euclidian distance to
|
||||
// the current pattern
|
||||
auto result = std::min_element(std::begin(*D), std::end(*D));
|
||||
double d_min = *result;
|
||||
int d_min_idx = std::distance(std::begin(*D), result);
|
||||
|
||||
// step 3a: get the neighborhood range
|
||||
int from_node = std::max(0, d_min_idx - R);
|
||||
int to_node = std::min(num_out, d_min_idx + R + 1);
|
||||
|
||||
// step 3b: update the weights of nodes in the
|
||||
// neighborhood
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (j = from_node; j < to_node; j++)
|
||||
// update weights of nodes in the neighborhood
|
||||
(*W)[j] += alpha * (x - (*W)[j]);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply incremental algorithm with updating neighborhood and learning rates
|
||||
* on all samples in the given datset.
|
||||
*
|
||||
* \param[in] X data set
|
||||
* \param[in,out] W weights matrix
|
||||
* \param[in] D temporary vector to store distances
|
||||
* \param[in] alpha_min terminal value of alpha
|
||||
*/
|
||||
void kohonen_som_tracer(const std::vector<std::valarray<double>> &X,
|
||||
std::vector<std::valarray<double>> *W,
|
||||
double alpha_min) {
|
||||
int num_samples = X.size(); // number of rows
|
||||
int num_features = X[0].size(); // number of columns
|
||||
int num_out = W->size(); // number of rows
|
||||
int R = num_out >> 2, iter = 0;
|
||||
double alpha = 1.f;
|
||||
|
||||
std::valarray<double> D(num_out);
|
||||
|
||||
// Loop alpha from 1 to slpha_min
|
||||
for (; alpha > alpha_min; alpha -= 0.01, iter++) {
|
||||
// Loop for each sample pattern in the data set
|
||||
for (int sample = 0; sample < num_samples; sample++) {
|
||||
// update weights for the current input pattern sample
|
||||
update_weights(X[sample], W, &D, alpha, R);
|
||||
}
|
||||
|
||||
// every 10th iteration, reduce the neighborhood range
|
||||
if (iter % 10 == 0 && R > 1)
|
||||
R--;
|
||||
}
|
||||
}
|
||||
|
||||
/** Creates a random set of points distributed *near* the circumference
|
||||
* of a circle and trains an SOM that finds that circular pattern. The
|
||||
* generating function is
|
||||
* \f{eqnarray*}{ \f}
|
||||
*
|
||||
* \param[out] data matrix to store data in
|
||||
*/
|
||||
void test_circle(std::vector<std::valarray<double>> *data) {
|
||||
const int N = data->size();
|
||||
const double R = 0.75, dr = 0.3;
|
||||
double a_t = 0., b_t = 2.f * M_PI; // theta random between 0 and 2*pi
|
||||
double a_r = R - dr, b_r = R + dr; // radius random between R-dr and R+dr
|
||||
int i;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < N; i++) {
|
||||
double r = _random(a_r, b_r); // random radius
|
||||
double theta = _random(a_t, b_t); // random theta
|
||||
data[0][i][0] = r * cos(theta); // convert from polar to cartesian
|
||||
data[0][i][1] = r * sin(theta);
|
||||
}
|
||||
}
|
||||
|
||||
/** Test that creates a random set of points distributed *near* the
|
||||
* circumference of a circle and trains an SOM that finds that circular pattern.
|
||||
* The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
|
||||
* files are created to validate the execution:
|
||||
* * `test1.csv`: random test samples points with a circular pattern
|
||||
* * `w11.csv`: initial random map
|
||||
* * `w12.csv`: trained SOM map
|
||||
*
|
||||
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
||||
* the following snippet
|
||||
* ```gnuplot
|
||||
* set datafile separator ','
|
||||
* plot "test1.csv" title "original", \
|
||||
* "w11.csv" title "w1", \
|
||||
* "w12.csv" title "w2"
|
||||
* ```
|
||||
* 
|
||||
*/
|
||||
void test1() {
|
||||
int j, N = 500;
|
||||
int features = 2;
|
||||
int num_out = 50;
|
||||
std::vector<std::valarray<double>> X(N);
|
||||
std::vector<std::valarray<double>> W(num_out);
|
||||
for (int i = 0; i < std::max(num_out, N); i++) {
|
||||
// loop till max(N, num_out)
|
||||
if (i < N) // only add new arrays if i < N
|
||||
X[i] = std::valarray<double>(features);
|
||||
if (i < num_out) { // only add new arrays if i < num_out
|
||||
W[i] = std::valarray<double>(features);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (j = 0; j < features; j++)
|
||||
// preallocate with random initial weights
|
||||
W[i][j] = _random(-1, 1);
|
||||
}
|
||||
}
|
||||
|
||||
test_circle(&X); // create test data around circumference of a circle
|
||||
save_nd_data("test1.csv", X); // save test data points
|
||||
save_nd_data("w11.csv", W); // save initial random weights
|
||||
kohonen_som_tracer(X, &W, 0.1); // train the SOM
|
||||
save_nd_data("w12.csv", W); // save the resultant weights
|
||||
}
|
||||
|
||||
/** Creates a random set of points distributed *near* the locus
|
||||
* of the [Lamniscate of
|
||||
* Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono) and trains an SOM
|
||||
* that finds that circular pattern.
|
||||
* \param[out] data matrix to store data in
|
||||
*/
|
||||
void test_lamniscate(std::vector<std::valarray<double>> *data) {
|
||||
const int N = data->size();
|
||||
const double dr = 0.2;
|
||||
int i;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < N; i++) {
|
||||
double dx = _random(-dr, dr); // random change in x
|
||||
double dy = _random(-dr, dr); // random change in y
|
||||
double theta = _random(0, M_PI); // random theta
|
||||
data[0][i][0] = dx + cos(theta); // convert from polar to cartesian
|
||||
data[0][i][1] = dy + sin(2. * theta) / 2.f;
|
||||
}
|
||||
}
|
||||
|
||||
/** Test that creates a random set of points distributed *near* the locus
|
||||
* of the [Lamniscate of
|
||||
* Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono) and trains an SOM
|
||||
* that finds that circular pattern. The following
|
||||
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
||||
* to validate the execution:
|
||||
* * `test2.csv`: random test samples points with a lamniscate pattern
|
||||
* * `w21.csv`: initial random map
|
||||
* * `w22.csv`: trained SOM map
|
||||
*
|
||||
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
||||
* the following snippet
|
||||
* ```gnuplot
|
||||
* set datafile separator ','
|
||||
* plot "test2.csv" title "original", \
|
||||
* "w21.csv" title "w1", \
|
||||
* "w22.csv" title "w2"
|
||||
* ```
|
||||
* 
|
||||
*/
|
||||
void test2() {
|
||||
int j, N = 500;
|
||||
int features = 2;
|
||||
int num_out = 20;
|
||||
std::vector<std::valarray<double>> X(N);
|
||||
std::vector<std::valarray<double>> W(num_out);
|
||||
for (int i = 0; i < std::max(num_out, N); i++) {
|
||||
// loop till max(N, num_out)
|
||||
if (i < N) // only add new arrays if i < N
|
||||
X[i] = std::valarray<double>(features);
|
||||
if (i < num_out) { // only add new arrays if i < num_out
|
||||
W[i] = std::valarray<double>(features);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (j = 0; j < features; j++)
|
||||
// preallocate with random initial weights
|
||||
W[i][j] = _random(-1, 1);
|
||||
}
|
||||
}
|
||||
|
||||
test_lamniscate(&X); // create test data around the lamniscate
|
||||
save_nd_data("test2.csv", X); // save test data points
|
||||
save_nd_data("w21.csv", W); // save initial random weights
|
||||
kohonen_som_tracer(X, &W, 0.01); // train the SOM
|
||||
save_nd_data("w22.csv", W); // save the resultant weights
|
||||
}
|
||||
|
||||
/** Creates a random set of points distributed *near* the locus
|
||||
* of the [Lamniscate of
|
||||
* Gerono](https://en.wikipedia.org/wiki/Lemniscate_of_Gerono) and trains an SOM
|
||||
* that finds that circular pattern.
|
||||
* \param[out] data matrix to store data in
|
||||
*/
|
||||
void test_3d_classes(std::vector<std::valarray<double>> *data) {
|
||||
const int N = data->size();
|
||||
const double R = 0.1; // radius of cluster
|
||||
int i;
|
||||
const int num_classes = 8;
|
||||
const double centres[][3] = {
|
||||
// centres of each class cluster
|
||||
{.5, .5, .5}, // centre of class 0
|
||||
{.5, .5, -.5}, // centre of class 1
|
||||
{.5, -.5, .5}, // centre of class 2
|
||||
{.5, -.5, -.5}, // centre of class 3
|
||||
{-.5, .5, .5}, // centre of class 4
|
||||
{-.5, .5, -.5}, // centre of class 5
|
||||
{-.5, -.5, .5}, // centre of class 6
|
||||
{-.5, -.5, -.5} // centre of class 7
|
||||
};
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (i = 0; i < N; i++) {
|
||||
int cls =
|
||||
std::rand() % num_classes; // select a random class for the point
|
||||
|
||||
// create random coordinates (x,y,z) around the centre of the class
|
||||
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
|
||||
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
|
||||
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
|
||||
|
||||
/* The follosing can also be used
|
||||
for (int j = 0; j < 3; j++)
|
||||
data[0][i][j] = _random(centres[cls][j] - R, centres[cls][j] + R);
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
/** Test that creates a random set of points distributed in six clusters in
|
||||
* 3D space. The following
|
||||
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
|
||||
* to validate the execution:
|
||||
* * `test3.csv`: random test samples points with a circular pattern
|
||||
* * `w31.csv`: initial random map
|
||||
* * `w32.csv`: trained SOM map
|
||||
*
|
||||
* The outputs can be readily plotted in [gnuplot](https:://gnuplot.info) using
|
||||
* the following snippet
|
||||
* ```gnuplot
|
||||
* set datafile separator ','
|
||||
* plot "test3.csv" title "original", \
|
||||
* "w31.csv" title "w1", \
|
||||
* "w32.csv" title "w2"
|
||||
* ```
|
||||
* 
|
||||
*/
|
||||
void test3() {
|
||||
int j, N = 200;
|
||||
int features = 3;
|
||||
int num_out = 20;
|
||||
std::vector<std::valarray<double>> X(N);
|
||||
std::vector<std::valarray<double>> W(num_out);
|
||||
for (int i = 0; i < std::max(num_out, N); i++) {
|
||||
// loop till max(N, num_out)
|
||||
if (i < N) // only add new arrays if i < N
|
||||
X[i] = std::valarray<double>(features);
|
||||
if (i < num_out) { // only add new arrays if i < num_out
|
||||
W[i] = std::valarray<double>(features);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (j = 0; j < features; j++)
|
||||
// preallocate with random initial weights
|
||||
W[i][j] = _random(-1, 1);
|
||||
}
|
||||
}
|
||||
|
||||
test_3d_classes(&X); // create test data around the lamniscate
|
||||
save_nd_data("test3.csv", X); // save test data points
|
||||
save_nd_data("w31.csv", W); // save initial random weights
|
||||
kohonen_som_tracer(X, &W, 0.01); // train the SOM
|
||||
save_nd_data("w32.csv", W); // save the resultant weights
|
||||
}
|
||||
|
||||
/** Main function */
|
||||
int main(int argc, char **argv) {
|
||||
#ifdef _OPENMP
|
||||
std::cout << "Using OpenMP based parallelization\n";
|
||||
#else
|
||||
std::cout << "NOT using OpenMP based parallelization\n";
|
||||
#endif
|
||||
|
||||
auto start_clk = std::chrono::steady_clock::now();
|
||||
test1();
|
||||
auto end_clk = std::chrono::steady_clock::now();
|
||||
std::chrono::duration<double> time_diff = end_clk - start_clk;
|
||||
std::cout << "Test 1 completed in " << time_diff.count() << " sec\n";
|
||||
|
||||
start_clk = std::chrono::steady_clock::now();
|
||||
test2();
|
||||
end_clk = std::chrono::steady_clock::now();
|
||||
time_diff = end_clk - start_clk;
|
||||
std::cout << "Test 2 completed in " << time_diff.count() << " sec\n";
|
||||
|
||||
start_clk = std::chrono::steady_clock::now();
|
||||
test3();
|
||||
end_clk = std::chrono::steady_clock::now();
|
||||
time_diff = end_clk - start_clk;
|
||||
std::cout << "Test 3 completed in " << time_diff.count() << " sec\n";
|
||||
|
||||
std::cout
|
||||
<< "(Note: Calculated times include: creating test sets, training "
|
||||
"model and writing files to disk.)\n\n";
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user