Update exponential_search.cpp

This commit is contained in:
Divide-et-impera-11
2019-11-30 22:56:10 +01:00
committed by GitHub
parent eeb7d5caa5
commit 67fdd7b735

View File

@@ -1,9 +1,9 @@
// Copyright 2020 Divide-et-Impera-11
// Copyright 2020 Divide-et-impera-11
#include <assert.h>
#include <iostream>
#include <string>
using namespaces std;
// Binary Search Algorithm(use by struziki algorithm)
// Binary Search Algorithm(use by struzik algorithm)
// Time Complexity O(log n) where 'n' is the number of elements
// Worst Time Complexity O(log n)
// Best Time Complexity Ω(1)
@@ -25,6 +25,13 @@ return nullptr;
// Best Time Complexity Ω(1)
// Space Complexity O(1)
// Auxiliary Space Complexity O(1)
/* Tha algorithm try to search the range where the key should be.
If it has been found we do a binary search there.
The range of the search grows by exponential every time.
If the key is larger than the last element of array,
the start of block(block_front) will be equal to the end of block(block_size)
and the algorithm return null ponter,
every other cases the algoritm return fom the loop. */
template<class Type> Type* struzik_search(Type* array, size_t size, Type key) {
uint32_t block_front(0), block_size = size == 0 ? 0 : 1;
while (block_front != block_size) {
@@ -38,10 +45,12 @@ template<class Type> Type* struzik_search(Type* array, size_t size, Type key) {
return nullptr;
}
int main() {
// TEST CASES
int *sorted_array = new int[7]{7, 10, 15, 23, 70, 105, 203};
assert(struzik_search<int>(sorted_array, 7, 0) == nullptr);
assert(struzik_search<int>(sorted_array, 7, 1000) == nullptr);
assert(struzik_search<int>(sorted_array, 7, 50) == nullptr);
assert(struzik_search<int>(sorted_array, 7, 7) == sorted_array);
// TEST CASES
return 0;
}