mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-09 21:47:07 +08:00
Merge branch 'master' into add/number_of_paths
This commit is contained in:
151
dynamic_programming/Unbounded_0_1_Knapsack.cpp
Normal file
151
dynamic_programming/Unbounded_0_1_Knapsack.cpp
Normal file
@@ -0,0 +1,151 @@
|
|||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @brief Implementation of the Unbounded 0/1 Knapsack Problem
|
||||||
|
*
|
||||||
|
* @details
|
||||||
|
* The Unbounded 0/1 Knapsack problem allows taking unlimited quantities of each item.
|
||||||
|
* The goal is to maximize the total value without exceeding the given knapsack capacity.
|
||||||
|
* Unlike the 0/1 knapsack, where each item can be taken only once, in this variation,
|
||||||
|
* any item can be picked any number of times as long as the total weight stays within
|
||||||
|
* the knapsack's capacity.
|
||||||
|
*
|
||||||
|
* Given a set of N items, each with a weight and a value, represented by the arrays
|
||||||
|
* `wt` and `val` respectively, and a knapsack with a weight limit W, the task is to
|
||||||
|
* fill the knapsack to maximize the total value.
|
||||||
|
*
|
||||||
|
* @note weight and value of items is greater than zero
|
||||||
|
*
|
||||||
|
* ### Algorithm
|
||||||
|
* The approach uses dynamic programming to build a solution iteratively.
|
||||||
|
* A 2D array is used for memoization to store intermediate results, allowing
|
||||||
|
* the function to avoid redundant calculations.
|
||||||
|
*
|
||||||
|
* @author [Sanskruti Yeole](https://github.com/yeolesanskruti)
|
||||||
|
* @see dynamic_programming/0_1_knapsack.cpp
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <iostream> // Standard input-output stream
|
||||||
|
#include <vector> // Standard library for using dynamic arrays (vectors)
|
||||||
|
#include <cassert> // For using assert function to validate test cases
|
||||||
|
#include <cstdint> // For fixed-width integer types like std::uint16_t
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace dynamic_programming
|
||||||
|
* @brief Namespace for dynamic programming algorithms
|
||||||
|
*/
|
||||||
|
namespace dynamic_programming {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace Knapsack
|
||||||
|
* @brief Implementation of unbounded 0-1 knapsack problem
|
||||||
|
*/
|
||||||
|
namespace unbounded_knapsack {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Recursive function to calculate the maximum value obtainable using
|
||||||
|
* an unbounded knapsack approach.
|
||||||
|
*
|
||||||
|
* @param i Current index in the value and weight vectors.
|
||||||
|
* @param W Remaining capacity of the knapsack.
|
||||||
|
* @param val Vector of values corresponding to the items.
|
||||||
|
* @note "val" data type can be changed according to the size of the input.
|
||||||
|
* @param wt Vector of weights corresponding to the items.
|
||||||
|
* @note "wt" data type can be changed according to the size of the input.
|
||||||
|
* @param dp 2D vector for memoization to avoid redundant calculations.
|
||||||
|
* @return The maximum value that can be obtained for the given index and capacity.
|
||||||
|
*/
|
||||||
|
std::uint16_t KnapSackFilling(std::uint16_t i, std::uint16_t W,
|
||||||
|
const std::vector<std::uint16_t>& val,
|
||||||
|
const std::vector<std::uint16_t>& wt,
|
||||||
|
std::vector<std::vector<int>>& dp) {
|
||||||
|
if (i == 0) {
|
||||||
|
if (wt[0] <= W) {
|
||||||
|
return (W / wt[0]) * val[0]; // Take as many of the first item as possible
|
||||||
|
} else {
|
||||||
|
return 0; // Can't take the first item
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (dp[i][W] != -1) return dp[i][W]; // Return result if available
|
||||||
|
|
||||||
|
int nottake = KnapSackFilling(i - 1, W, val, wt, dp); // Value without taking item i
|
||||||
|
int take = 0;
|
||||||
|
if (W >= wt[i]) {
|
||||||
|
take = val[i] + KnapSackFilling(i, W - wt[i], val, wt, dp); // Value taking item i
|
||||||
|
}
|
||||||
|
return dp[i][W] = std::max(take, nottake); // Store and return the maximum value
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Wrapper function to initiate the unbounded knapsack calculation.
|
||||||
|
*
|
||||||
|
* @param N Number of items.
|
||||||
|
* @param W Maximum weight capacity of the knapsack.
|
||||||
|
* @param val Vector of values corresponding to the items.
|
||||||
|
* @param wt Vector of weights corresponding to the items.
|
||||||
|
* @return The maximum value that can be obtained for the given capacity.
|
||||||
|
*/
|
||||||
|
std::uint16_t unboundedKnapsack(std::uint16_t N, std::uint16_t W,
|
||||||
|
const std::vector<std::uint16_t>& val,
|
||||||
|
const std::vector<std::uint16_t>& wt) {
|
||||||
|
if(N==0)return 0; // Expect 0 since no items
|
||||||
|
std::vector<std::vector<int>> dp(N, std::vector<int>(W + 1, -1)); // Initialize memoization table
|
||||||
|
return KnapSackFilling(N - 1, W, val, wt, dp); // Start the calculation
|
||||||
|
}
|
||||||
|
|
||||||
|
} // unbounded_knapsack
|
||||||
|
|
||||||
|
} // dynamic_programming
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief self test implementation
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
static void tests() {
|
||||||
|
// Test Case 1
|
||||||
|
std::uint16_t N1 = 4; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt1 = {1, 3, 4, 5}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val1 = {6, 1, 7, 7}; // Values of the items
|
||||||
|
std::uint16_t W1 = 8; // Maximum capacity of the knapsack
|
||||||
|
// Test the function and assert the expected output
|
||||||
|
assert(unboundedKnapsack(N1, W1, val1, wt1) == 48);
|
||||||
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N1, W1, val1, wt1) << std::endl;
|
||||||
|
|
||||||
|
// Test Case 2
|
||||||
|
std::uint16_t N2 = 3; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt2 = {10, 20, 30}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val2 = {60, 100, 120}; // Values of the items
|
||||||
|
std::uint16_t W2 = 5; // Maximum capacity of the knapsack
|
||||||
|
// Test the function and assert the expected output
|
||||||
|
assert(unboundedKnapsack(N2, W2, val2, wt2) == 0);
|
||||||
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N2, W2, val2, wt2) << std::endl;
|
||||||
|
|
||||||
|
// Test Case 3
|
||||||
|
std::uint16_t N3 = 3; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt3 = {2, 4, 6}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val3 = {5, 11, 13};// Values of the items
|
||||||
|
std::uint16_t W3 = 27;// Maximum capacity of the knapsack
|
||||||
|
// Test the function and assert the expected output
|
||||||
|
assert(unboundedKnapsack(N3, W3, val3, wt3) == 27);
|
||||||
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N3, W3, val3, wt3) << std::endl;
|
||||||
|
|
||||||
|
// Test Case 4
|
||||||
|
std::uint16_t N4 = 0; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt4 = {}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val4 = {}; // Values of the items
|
||||||
|
std::uint16_t W4 = 10; // Maximum capacity of the knapsack
|
||||||
|
assert(unboundedKnapsack(N4, W4, val4, wt4) == 0);
|
||||||
|
std::cout << "Maximum Knapsack value for empty arrays: " << unboundedKnapsack(N4, W4, val4, wt4) << std::endl;
|
||||||
|
|
||||||
|
std::cout << "All test cases passed!" << std::endl;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief main function
|
||||||
|
* @return 0 on successful exit
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
tests(); // Run self test implementation
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
/**
|
/**
|
||||||
* @file
|
* @file
|
||||||
* @brief Get list of prime numbers using Sieve of Eratosthenes
|
* @brief Prime Numbers using [Sieve of
|
||||||
|
* Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
|
||||||
* @details
|
* @details
|
||||||
* Sieve of Eratosthenes is an algorithm that finds all the primes
|
* Sieve of Eratosthenes is an algorithm that finds all the primes
|
||||||
* between 2 and N.
|
* between 2 and N.
|
||||||
@@ -11,21 +12,39 @@
|
|||||||
* @see primes_up_to_billion.cpp prime_numbers.cpp
|
* @see primes_up_to_billion.cpp prime_numbers.cpp
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert> /// for assert
|
||||||
#include <iostream>
|
#include <iostream> /// for IO operations
|
||||||
#include <vector>
|
#include <vector> /// for std::vector
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This is the function that finds the primes and eliminates the multiples.
|
* @namespace math
|
||||||
|
* @brief Mathematical algorithms
|
||||||
|
*/
|
||||||
|
namespace math {
|
||||||
|
/**
|
||||||
|
* @namespace sieve_of_eratosthenes
|
||||||
|
* @brief Functions for finding Prime Numbers using Sieve of Eratosthenes
|
||||||
|
*/
|
||||||
|
namespace sieve_of_eratosthenes {
|
||||||
|
/**
|
||||||
|
* @brief Function to sieve out the primes
|
||||||
|
* @details
|
||||||
|
* This function finds all the primes between 2 and N using the Sieve of
|
||||||
|
* Eratosthenes algorithm. It starts by assuming all numbers (except zero and
|
||||||
|
* one) are prime and then iteratively marks the multiples of each prime as
|
||||||
|
* non-prime.
|
||||||
|
*
|
||||||
* Contains a common optimization to start eliminating multiples of
|
* Contains a common optimization to start eliminating multiples of
|
||||||
* a prime p starting from p * p since all of the lower multiples
|
* a prime p starting from p * p since all of the lower multiples
|
||||||
* have been already eliminated.
|
* have been already eliminated.
|
||||||
* @param N number of primes to check
|
* @param N number till which primes are to be found
|
||||||
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
|
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is
|
||||||
|
* a prime or not
|
||||||
*/
|
*/
|
||||||
std::vector<bool> sieve(uint32_t N) {
|
std::vector<bool> sieve(uint32_t N) {
|
||||||
std::vector<bool> is_prime(N + 1, true);
|
std::vector<bool> is_prime(N + 1, true); // Initialize all as prime numbers
|
||||||
is_prime[0] = is_prime[1] = false;
|
is_prime[0] = is_prime[1] = false; // 0 and 1 are not prime numbers
|
||||||
|
|
||||||
for (uint32_t i = 2; i * i <= N; i++) {
|
for (uint32_t i = 2; i * i <= N; i++) {
|
||||||
if (is_prime[i]) {
|
if (is_prime[i]) {
|
||||||
for (uint32_t j = i * i; j <= N; j += i) {
|
for (uint32_t j = i * i; j <= N; j += i) {
|
||||||
@@ -37,9 +56,10 @@ std::vector<bool> sieve(uint32_t N) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This function prints out the primes to STDOUT
|
* @brief Function to print the prime numbers
|
||||||
* @param N number of primes to check
|
* @param N number till which primes are to be found
|
||||||
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
|
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is
|
||||||
|
* a prime or not
|
||||||
*/
|
*/
|
||||||
void print(uint32_t N, const std::vector<bool> &is_prime) {
|
void print(uint32_t N, const std::vector<bool> &is_prime) {
|
||||||
for (uint32_t i = 2; i <= N; i++) {
|
for (uint32_t i = 2; i <= N; i++) {
|
||||||
@@ -50,23 +70,53 @@ void print(uint32_t N, const std::vector<bool> &is_prime) {
|
|||||||
std::cout << std::endl;
|
std::cout << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
} // namespace sieve_of_eratosthenes
|
||||||
|
} // namespace math
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Test implementations
|
* @brief Self-test implementations
|
||||||
|
* @return void
|
||||||
*/
|
*/
|
||||||
void tests() {
|
static void tests() {
|
||||||
// 0 1 2 3 4 5 6 7 8 9 10
|
std::vector<bool> is_prime_1 =
|
||||||
std::vector<bool> ans{false, false, true, true, false, true, false, true, false, false, false};
|
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(10));
|
||||||
assert(sieve(10) == ans);
|
std::vector<bool> is_prime_2 =
|
||||||
|
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(20));
|
||||||
|
std::vector<bool> is_prime_3 =
|
||||||
|
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(100));
|
||||||
|
|
||||||
|
std::vector<bool> expected_1{false, false, true, true, false, true,
|
||||||
|
false, true, false, false, false};
|
||||||
|
assert(is_prime_1 == expected_1);
|
||||||
|
|
||||||
|
std::vector<bool> expected_2{false, false, true, true, false, true,
|
||||||
|
false, true, false, false, false, true,
|
||||||
|
false, true, false, false, false, true,
|
||||||
|
false, true, false};
|
||||||
|
assert(is_prime_2 == expected_2);
|
||||||
|
|
||||||
|
std::vector<bool> expected_3{
|
||||||
|
false, false, true, true, false, true, false, true, false, false,
|
||||||
|
false, true, false, true, false, false, false, true, false, true,
|
||||||
|
false, false, false, true, false, false, false, false, false, true,
|
||||||
|
false, true, false, false, false, false, false, true, false, false,
|
||||||
|
false, true, false, true, false, false, false, true, false, false,
|
||||||
|
false, false, false, true, false, false, false, false, false, true,
|
||||||
|
false, true, false, false, false, false, false, true, false, false,
|
||||||
|
false, true, false, true, false, false, false, false, false, true,
|
||||||
|
false, false, false, true, false, false, false, false, false, true,
|
||||||
|
false, false, false, false, false, false, false, true, false, false,
|
||||||
|
false};
|
||||||
|
assert(is_prime_3 == expected_3);
|
||||||
|
|
||||||
|
std::cout << "All tests have passed successfully!\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Main function
|
* @brief Main function
|
||||||
|
* @returns 0 on exit
|
||||||
*/
|
*/
|
||||||
int main() {
|
int main() {
|
||||||
tests();
|
tests();
|
||||||
|
|
||||||
uint32_t N = 100;
|
|
||||||
std::vector<bool> is_prime = sieve(N);
|
|
||||||
print(N, is_prime);
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user