feat: LFU (Least frequently used) cache (#2757)

* feat: add lfu cache

* docs: add comments and explanation to class LFUCache

* test: add tests for class lfu cache

* docs: document namespace and classes

* test: modify tests to check negative numbers

* docs: document template params and class data members

* test: make test func static and move tests in the same func

---------

Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
This commit is contained in:
deDSeC00720
2024-10-07 19:02:52 +05:30
committed by GitHub
parent fddedd8864
commit 821d20c33a

304
others/lfu_cache.cpp Normal file
View File

@@ -0,0 +1,304 @@
/**
* @file
* @brief Implementation for [LFU Cache]
* (https://en.wikipedia.org/wiki/Least_frequently_used)
*
* @details
* LFU discards the least frequently used value. if there are multiple items
* with the same minimum frequency then, the least recently used among them is
* discarded. Data structures used - doubly linked list and unordered_map(hash
* map).
*
* Hashmap maps the key to the address of the node of the linked list and its
* current usage frequency. If the element is accessed the element is removed
* from the linked list of the current frequency and added to the linked list of
* incremented frequency.
*
* When the cache is full, the last element in the minimum frequency linked list
* is popped.
*
* @author [Karan Sharma](https://github.com/deDSeC00720)
*/
#include <cassert> // for assert
#include <iostream> // for std::cout
#include <unordered_map> // for std::unordered_map
/**
* @namespace
* @brief Other algorithms
*/
namespace others {
/**
* @namespace
* @brief Cache algorithm
*/
namespace Cache {
/**
* @class
* @brief Node for a doubly linked list with data, prev and next pointers
* @tparam T type of the data of the node
*/
template <typename T>
class D_Node {
public:
T data; ///< data of the node
D_Node<T> *prev; ///< previous node in the doubly linked list
D_Node<T> *next; ///< next node in the doubly linked list
explicit D_Node(T data) : data(data), prev(nullptr), next(nullptr) {}
};
template <typename K, typename V>
using CacheNode = D_Node<std::pair<K, V>>;
/**
* @class
* @brief LFUCache
* @tparam K type of key in the LFU
* @tparam V type of value in the LFU
*/
template <typename K, typename V>
class LFUCache {
std::unordered_map<K, std::pair<CacheNode<K, V> *, int>>
node_map; ///< maps the key to the node address and frequency
std::unordered_map<int, std::pair<CacheNode<K, V> *, CacheNode<K, V> *>>
freq_map; ///< maps the frequency to doubly linked list
int minFreq; ///< minimum frequency in the cache
int _capacity; ///< maximum capacity of the cache
public:
/**
* @brief Constructor, Initialize with minFreq and _capacity.
* @param _capacity Total capacity of the cache.
*/
explicit LFUCache(int _capacity) : minFreq(0), _capacity(_capacity) {}
private:
/**
* @brief push the node at first position in the linked list of given
* frequency
* @param freq the frequency mapping to the linked list where node should be
* pushed.
* @param node node to be pushed to the linked list.
*/
void push(int freq, CacheNode<K, V> *node) {
// if freq is not present, then make a new list with node as the head as
// well as tail.
if (!freq_map.count(freq)) {
freq_map[freq] = {node, node};
return;
}
std::pair<CacheNode<K, V> *, CacheNode<K, V> *> &p = freq_map[freq];
// insert the node at the beginning of the linked list and update the
// head.
p.first->prev = node;
node->next = p.first;
p.first = node;
}
/**
* @brief increase the frequency of node and push it in the respective list.
* @param p_node the node to be updated
*/
void increase_frequency(std::pair<CacheNode<K, V> *, int> &p_node) {
CacheNode<K, V> *node = p_node.first;
int freq = p_node.second;
std::pair<CacheNode<K, V> *, CacheNode<K, V> *> &p = freq_map[freq];
// if the given node is the only node in the list,
// then erase the frequency from map
// and increase minFreq by 1.
if (p.first == node && p.second == node) {
freq_map.erase(freq);
if (minFreq == freq) {
minFreq = freq + 1;
}
} else {
// remove the given node from current freq linked list
CacheNode<K, V> *prev = node->prev;
CacheNode<K, V> *next = node->next;
node->prev = nullptr;
node->next = nullptr;
if (prev) {
prev->next = next;
} else {
p.first = next;
}
if (next) {
next->prev = prev;
} else {
p.second = prev;
}
}
push(freq + 1, node);
++p_node.second;
}
/**
* @brief pop the last node in the least frequently used linked list
*/
void pop() {
std::pair<CacheNode<K, V> *, CacheNode<K, V> *> &p = freq_map[minFreq];
// if there is only one node
// remove the node and erase
// the frequency from freq_map
if (p.first == p.second) {
delete p.first;
freq_map.erase(minFreq);
return;
}
// remove the last node in the linked list
CacheNode<K, V> *temp = p.second;
p.second = temp->prev;
p.second->next = nullptr;
delete temp;
}
public:
/**
* @brief upsert a key-value pair
* @param key key of the key-value pair
* @param value value of the key-value pair
*/
void put(K key, V value) {
// update the value if key already exists
if (node_map.count(key)) {
node_map[key].first->data.second = value;
increase_frequency(node_map[key]);
return;
}
// if the cache is full
// remove the least frequently used item
if (node_map.size() == _capacity) {
node_map.erase(freq_map[minFreq].second->data.first);
pop();
}
// insert the new node and set minFreq to 1
CacheNode<K, V> *node = new CacheNode<K, V>({key, value});
node_map[key] = {node, 1};
minFreq = 1;
push(1, node);
}
/**
* @brief get the value of the key-value pair if exists
* @param key key of the key-value pair
* @return the value mapped to the given key
* @exception exception is thrown if the key is not present in the cache
*/
V get(K key) {
if (!node_map.count(key)) {
throw std::runtime_error("key is not present in the cache");
}
// increase the frequency and return the value
V value = node_map[key].first->data.second;
increase_frequency(node_map[key]);
return value;
}
/**
* @brief Returns the number of items present in the cache.
* @return number of items in the cache
*/
int size() const { return node_map.size(); }
/**
* @brief Returns the total capacity of the cache
* @return Total capacity of the cache
*/
int capacity() const { return _capacity; }
/**
* @brief returns true if the cache is empty, false otherwise.
* @return true if the cache is empty, false otherwise.
*/
bool empty() const { return node_map.empty(); }
/**
* @brief destructs the cache, iterates on the map and deletes every node
* present in the cache.
*/
~LFUCache() {
auto it = node_map.begin();
while (it != node_map.end()) {
delete it->second.first;
++it;
}
}
};
} // namespace Cache
} // namespace others
/**
* @brief self test implementation
* @return void
*/
static void test() {
others::Cache::LFUCache<int, int> cache(5);
// test the initial state of the cache
assert(cache.size() == 0);
assert(cache.capacity() == 5);
assert(cache.empty());
// test insertion in the cache
cache.put(1, 10);
cache.put(-2, 20);
// test the state of cache after inserting some items
assert(cache.size() == 2);
assert(cache.capacity() == 5);
assert(!cache.empty());
// test getting items from the cache
assert(cache.get(1) == 10);
assert(cache.get(-2) == 20);
cache.put(-3, -30);
cache.put(4, 40);
cache.put(5, -50);
cache.put(6, 60);
// test the state after inserting more items than the capacity
assert(cache.size() == 5);
assert(cache.capacity() == 5);
assert(!cache.empty());
// test retrieval of all items in the cache
assert(cache.get(1) == 10);
assert(cache.get(-2) == 20);
// fetching -3 throws runtime_error
// as -3 was evicted being the least frequently used
// when 6 was added
// assert(cache.get(-3) == -30);
assert(cache.get(4) == 40);
assert(cache.get(5) == -50);
assert(cache.get(6) == 60);
std::cout << "test - passed\n";
}
/**
* @brief main function
* @return 0 on exit
*/
int main() {
test(); // run the self test implementation
return 0;
}