mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-12 23:15:52 +08:00
Merge pull request #57 from akhem301/master
Prime Factorization of a number
This commit is contained in:
10
Math/Prime_Factorization/README.md
Normal file
10
Math/Prime_Factorization/README.md
Normal file
@@ -0,0 +1,10 @@
|
||||
Prime Factorization is a very important and useful technique to factorize any number into its prime factors. It has various applications in the field of number theory.
|
||||
|
||||
The method of prime factorization involves two function calls.
|
||||
First: Calculating all the prime number up till a certain range using the standard
|
||||
Sieve of Eratosthenes.
|
||||
|
||||
Second: Using the prime numbers to reduce the the given number and thus find all its prime factors.
|
||||
|
||||
The complexity of the solution involves approx. O(n logn) in calculating sieve of eratosthenes
|
||||
O(log n) in calculating the prime factors of the number. So in total approx. O(n logn).
|
||||
71
Math/Prime_Factorization/primefactorization.cpp
Normal file
71
Math/Prime_Factorization/primefactorization.cpp
Normal file
@@ -0,0 +1,71 @@
|
||||
#include <bits/stdc++.h>
|
||||
using namespace std;
|
||||
|
||||
// Declaring variables for maintaing prime numbers and to check whether a number is prime or not
|
||||
bool isprime[1000006];
|
||||
vector<int> prime_numbers;
|
||||
vector<pair<int,int> > factors;
|
||||
|
||||
// Calculating prime number upto a given range
|
||||
void SieveOfEratosthenes(int N)
|
||||
{
|
||||
memset(isprime, true, sizeof isprime);
|
||||
|
||||
for(int i=2; i<=N ;i++)
|
||||
{
|
||||
if(isprime[i])
|
||||
{
|
||||
for(int j=2*i; j<=N; j+=i)
|
||||
isprime[j]=false;
|
||||
}
|
||||
}
|
||||
|
||||
for(int i=2;i<=N;i++)
|
||||
{
|
||||
if(isprime[i])
|
||||
prime_numbers.push_back(i);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Prime factorization of a number
|
||||
void prime_factorization(int num)
|
||||
{
|
||||
for(int i=0; prime_numbers[i]<=num; i++)
|
||||
{
|
||||
int count=0;
|
||||
|
||||
while(num%prime_numbers[i] == 0)
|
||||
{
|
||||
count++;
|
||||
num = num/prime_numbers[i];
|
||||
}
|
||||
|
||||
if(count)
|
||||
factors.push_back(make_pair(prime_numbers[i],count));
|
||||
}
|
||||
|
||||
if(num>2)
|
||||
factors.push_back(make_pair(num,1));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int num;
|
||||
cin>>num;
|
||||
|
||||
SieveOfEratosthenes(num);
|
||||
|
||||
prime_factorization(num);
|
||||
|
||||
// Prime factors with their powers in the given number in new line
|
||||
for(auto it: factors)
|
||||
{
|
||||
cout<<it.first<<" "<<it.second<<endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user