mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 10:35:34 +08:00
fix: make interface of NCRModuloP fail-safe (#2469)
* fix: set proper size of fac * style: use std::size_t as a type of loop counter * style: use uint64_t as a type of loop counter * fix: remove p from the argument list of NCRModuloP::ncr * refactor: add utils namespace * refactor: use references in gcdExtended * refactor: add NCRModuloP::computeFactorialsMod * style: make NCRModuloP::ncr const * test: reorganize tests * test: add missing test cases * refactor: simplify logic * style: make example object const * style: use auto * style: use int64_t to avoid narrowing conversions * docs: update explanation why to import iostream * docs: remove `p` from docstr of `NCRModuloP::ncr` * docs: udpate doc-strs and add example() * Apply suggestions from code review Co-authored-by: David Leal <halfpacho@gmail.com> * dosc: add missing docs * feat: display message when all tests pass Co-authored-by: David Leal <halfpacho@gmail.com> * style: initialize `NCRModuloP::p` with `0` Co-authored-by: David Leal <halfpacho@gmail.com> --------- Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
This commit is contained in:
@@ -10,7 +10,7 @@
|
||||
*/
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for io operations
|
||||
#include <iostream> /// for std::cout
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
@@ -25,71 +25,95 @@ namespace math {
|
||||
* implementation.
|
||||
*/
|
||||
namespace ncr_modulo_p {
|
||||
|
||||
/**
|
||||
* @namespace utils
|
||||
* @brief this namespace contains the definitions of the functions called from
|
||||
* the class math::ncr_modulo_p::NCRModuloP
|
||||
*/
|
||||
namespace utils {
|
||||
/**
|
||||
* @brief finds the values x and y such that a*x + b*y = gcd(a,b)
|
||||
*
|
||||
* @param[in] a the first input of the gcd
|
||||
* @param[in] a the second input of the gcd
|
||||
* @param[out] x the Bézout coefficient of a
|
||||
* @param[out] y the Bézout coefficient of b
|
||||
* @return the gcd of a and b
|
||||
*/
|
||||
int64_t gcdExtended(const int64_t& a, const int64_t& b, int64_t& x,
|
||||
int64_t& y) {
|
||||
if (a == 0) {
|
||||
x = 0;
|
||||
y = 1;
|
||||
return b;
|
||||
}
|
||||
|
||||
int64_t x1 = 0, y1 = 0;
|
||||
const int64_t gcd = gcdExtended(b % a, a, x1, y1);
|
||||
|
||||
x = y1 - (b / a) * x1;
|
||||
y = x1;
|
||||
return gcd;
|
||||
}
|
||||
|
||||
/** Find modular inverse of a modulo m i.e. a number x such that (a*x)%m = 1
|
||||
*
|
||||
* @param[in] a the number for which the modular inverse is queried
|
||||
* @param[in] m the modulus
|
||||
* @return the inverce of a modulo m, if it exists, -1 otherwise
|
||||
*/
|
||||
int64_t modInverse(const int64_t& a, const int64_t& m) {
|
||||
int64_t x = 0, y = 0;
|
||||
const int64_t g = gcdExtended(a, m, x, y);
|
||||
if (g != 1) { // modular inverse doesn't exist
|
||||
return -1;
|
||||
} else {
|
||||
return ((x + m) % m);
|
||||
}
|
||||
}
|
||||
} // namespace utils
|
||||
/**
|
||||
* @brief Class which contains all methods required for calculating nCr mod p
|
||||
*/
|
||||
class NCRModuloP {
|
||||
private:
|
||||
std::vector<uint64_t> fac{}; /// stores precomputed factorial(i) % p value
|
||||
uint64_t p = 0; /// the p from (nCr % p)
|
||||
const int64_t p = 0; /// the p from (nCr % p)
|
||||
const std::vector<int64_t>
|
||||
fac; /// stores precomputed factorial(i) % p value
|
||||
|
||||
/**
|
||||
* @brief computes the array of values of factorials reduced modulo mod
|
||||
* @param max_arg_val argument of the last factorial stored in the result
|
||||
* @param mod value of the divisor used to reduce factorials
|
||||
* @return vector storing factorials of the numbers 0, ..., max_arg_val
|
||||
* reduced modulo mod
|
||||
*/
|
||||
static std::vector<int64_t> computeFactorialsMod(const int64_t& max_arg_val,
|
||||
const int64_t& mod) {
|
||||
auto res = std::vector<int64_t>(max_arg_val + 1);
|
||||
res[0] = 1;
|
||||
for (int64_t i = 1; i <= max_arg_val; i++) {
|
||||
res[i] = (res[i - 1] * i) % mod;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public:
|
||||
/** Constructor which precomputes the values of n! % mod from n=0 to size
|
||||
* and stores them in vector 'fac'
|
||||
* @params[in] the numbers 'size', 'mod'
|
||||
/**
|
||||
* @brief constructs an NCRModuloP object allowing to compute (nCr)%p for
|
||||
* inputs from 0 to size
|
||||
*/
|
||||
NCRModuloP(const uint64_t& size, const uint64_t& mod) {
|
||||
p = mod;
|
||||
fac = std::vector<uint64_t>(size);
|
||||
fac[0] = 1;
|
||||
for (int i = 1; i <= size; i++) {
|
||||
fac[i] = (fac[i - 1] * i) % p;
|
||||
}
|
||||
}
|
||||
NCRModuloP(const int64_t& size, const int64_t& p)
|
||||
: p(p), fac(computeFactorialsMod(size, p)) {}
|
||||
|
||||
/** Finds the value of x, y such that a*x + b*y = gcd(a,b)
|
||||
*
|
||||
* @params[in] the numbers 'a', 'b' and address of 'x' and 'y' from above
|
||||
* equation
|
||||
* @returns the gcd of a and b
|
||||
/**
|
||||
* @brief computes nCr % p
|
||||
* @param[in] n the number of objects to be chosen
|
||||
* @param[in] r the number of objects to choose from
|
||||
* @return the value nCr % p
|
||||
*/
|
||||
uint64_t gcdExtended(const uint64_t& a, const uint64_t& b, int64_t* x,
|
||||
int64_t* y) {
|
||||
if (a == 0) {
|
||||
*x = 0, *y = 1;
|
||||
return b;
|
||||
}
|
||||
|
||||
int64_t x1 = 0, y1 = 0;
|
||||
uint64_t gcd = gcdExtended(b % a, a, &x1, &y1);
|
||||
|
||||
*x = y1 - (b / a) * x1;
|
||||
*y = x1;
|
||||
return gcd;
|
||||
}
|
||||
|
||||
/** Find modular inverse of a with m i.e. a number x such that (a*x)%m = 1
|
||||
*
|
||||
* @params[in] the numbers 'a' and 'm' from above equation
|
||||
* @returns the modular inverse of a
|
||||
*/
|
||||
int64_t modInverse(const uint64_t& a, const uint64_t& m) {
|
||||
int64_t x = 0, y = 0;
|
||||
uint64_t g = gcdExtended(a, m, &x, &y);
|
||||
if (g != 1) { // modular inverse doesn't exist
|
||||
return -1;
|
||||
} else {
|
||||
int64_t res = ((x + m) % m);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/** Find nCr % p
|
||||
*
|
||||
* @params[in] the numbers 'n', 'r' and 'p'
|
||||
* @returns the value nCr % p
|
||||
*/
|
||||
int64_t ncr(const uint64_t& n, const uint64_t& r, const uint64_t& p) {
|
||||
int64_t ncr(const int64_t& n, const int64_t& r) const {
|
||||
// Base cases
|
||||
if (r > n) {
|
||||
return 0;
|
||||
@@ -101,50 +125,71 @@ class NCRModuloP {
|
||||
return 1;
|
||||
}
|
||||
// fac is a global array with fac[r] = (r! % p)
|
||||
int64_t denominator = modInverse(fac[r], p);
|
||||
if (denominator < 0) { // modular inverse doesn't exist
|
||||
const auto denominator = (fac[r] * fac[n - r]) % p;
|
||||
const auto denominator_inv = utils::modInverse(denominator, p);
|
||||
if (denominator_inv < 0) { // modular inverse doesn't exist
|
||||
return -1;
|
||||
}
|
||||
denominator = (denominator * modInverse(fac[n - r], p)) % p;
|
||||
if (denominator < 0) { // modular inverse doesn't exist
|
||||
return -1;
|
||||
}
|
||||
return (fac[n] * denominator) % p;
|
||||
return (fac[n] * denominator_inv) % p;
|
||||
}
|
||||
};
|
||||
} // namespace ncr_modulo_p
|
||||
} // namespace math
|
||||
|
||||
/**
|
||||
* @brief Test implementations
|
||||
* @param ncrObj object which contains the precomputed factorial values and
|
||||
* ncr function
|
||||
* @returns void
|
||||
* @brief tests math::ncr_modulo_p::NCRModuloP
|
||||
*/
|
||||
static void tests(math::ncr_modulo_p::NCRModuloP ncrObj) {
|
||||
// (52323 C 26161) % (1e9 + 7) = 224944353
|
||||
assert(ncrObj.ncr(52323, 26161, 1000000007) == 224944353);
|
||||
// 6 C 2 = 30, 30%5 = 0
|
||||
assert(ncrObj.ncr(6, 2, 5) == 0);
|
||||
// 7C3 = 35, 35 % 29 = 8
|
||||
assert(ncrObj.ncr(7, 3, 29) == 6);
|
||||
static void tests() {
|
||||
struct TestCase {
|
||||
const int64_t size;
|
||||
const int64_t p;
|
||||
const int64_t n;
|
||||
const int64_t r;
|
||||
const int64_t expected;
|
||||
|
||||
TestCase(const int64_t size, const int64_t p, const int64_t n,
|
||||
const int64_t r, const int64_t expected)
|
||||
: size(size), p(p), n(n), r(r), expected(expected) {}
|
||||
};
|
||||
const std::vector<TestCase> test_cases = {
|
||||
TestCase(60000, 1000000007, 52323, 26161, 224944353),
|
||||
TestCase(20, 5, 6, 2, 30 % 5),
|
||||
TestCase(100, 29, 7, 3, 35 % 29),
|
||||
TestCase(1000, 13, 10, 3, 120 % 13),
|
||||
TestCase(20, 17, 1, 10, 0),
|
||||
TestCase(45, 19, 23, 1, 23 % 19),
|
||||
TestCase(45, 19, 23, 0, 1),
|
||||
TestCase(45, 19, 23, 23, 1),
|
||||
TestCase(20, 9, 10, 2, -1)};
|
||||
for (const auto& tc : test_cases) {
|
||||
assert(math::ncr_modulo_p::NCRModuloP(tc.size, tc.p).ncr(tc.n, tc.r) ==
|
||||
tc.expected);
|
||||
}
|
||||
|
||||
std::cout << "\n\nAll tests have successfully passed!\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
* @brief example showing the usage of the math::ncr_modulo_p::NCRModuloP class
|
||||
*/
|
||||
int main() {
|
||||
// populate the fac array
|
||||
const uint64_t size = 1e6 + 1;
|
||||
const uint64_t p = 1e9 + 7;
|
||||
math::ncr_modulo_p::NCRModuloP ncrObj =
|
||||
math::ncr_modulo_p::NCRModuloP(size, p);
|
||||
// test 6Ci for i=0 to 7
|
||||
void example() {
|
||||
const int64_t size = 1e6 + 1;
|
||||
const int64_t p = 1e9 + 7;
|
||||
|
||||
// the ncrObj contains the precomputed values of factorials modulo p for
|
||||
// values from 0 to size
|
||||
const auto ncrObj = math::ncr_modulo_p::NCRModuloP(size, p);
|
||||
|
||||
// having the ncrObj we can efficiently query the values of (n C r)%p
|
||||
// note that time of the computation does not depend on size
|
||||
for (int i = 0; i <= 7; i++) {
|
||||
std::cout << 6 << "C" << i << " = " << ncrObj.ncr(6, i, p) << "\n";
|
||||
std::cout << 6 << "C" << i << " mod " << p << " = " << ncrObj.ncr(6, i)
|
||||
<< "\n";
|
||||
}
|
||||
tests(ncrObj); // execute the tests
|
||||
std::cout << "Assertions passed\n";
|
||||
}
|
||||
|
||||
int main() {
|
||||
tests();
|
||||
example();
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user