mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-11 06:26:05 +08:00
Create count_inversions.cpp
Counts the number of inversions in a list using merge sort. The number of Inversions in a list is the measure of the list's proximity to being sorted in ascending/increasing order.
This commit is contained in:
260
sorting/count_inversions.cpp
Normal file
260
sorting/count_inversions.cpp
Normal file
@@ -0,0 +1,260 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Counting Inversions using [Merge
|
||||
Sort](https://en.wikipedia.org/wiki/Merge_sort)
|
||||
*
|
||||
* @details
|
||||
* Program to count the number of inversions in an array
|
||||
* using merge-sort.
|
||||
*
|
||||
* The count of inversions help to determine how close the array
|
||||
* is to being sorted in ASCENDING order.
|
||||
*
|
||||
* two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j
|
||||
*
|
||||
* Time Complexity --> O(n.log n)
|
||||
* Space Complexity --> O(n) ; additional arrat temp[1..n]
|
||||
* ### Algorithm
|
||||
|
||||
* 1. The idea is similar to merge sort, divide the array into two equal or
|
||||
almost
|
||||
* equal halves in each step until the base case is reached.
|
||||
* 2. Create a function merge that counts the number of inversions when two
|
||||
halves of
|
||||
* the array are merged, create two indices i and j, i is the index for
|
||||
first half
|
||||
* and j is an index of the second half. if a[i] is greater than a[j], then
|
||||
there are (mid – i)
|
||||
* inversions, Because left and right subarrays are sorted, so all the
|
||||
remaining elements
|
||||
* in left-subarray (a[i+1], a[i+2] … a[mid]) will be greater than a[j].
|
||||
* 3. Create a recursive function to divide the array into halves and find the
|
||||
answer by summing
|
||||
* the number of inversions is the first half, number of inversion in the
|
||||
second half and
|
||||
* the number of inversions by merging the two.
|
||||
* 4. The base case of recursion is when there is only one element in the
|
||||
given half.
|
||||
* 5. Print the answer
|
||||
*
|
||||
* @author [Rakshit Raj](https://github.com/rakshitraj)
|
||||
*/
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
/**
|
||||
* @namespace sorting
|
||||
* @brief Sorting algorithms
|
||||
*/
|
||||
namespace sorting {
|
||||
/**
|
||||
* @namespace inversion
|
||||
* @brief Functions for counting inversions using Merge Sort algorithm
|
||||
*/
|
||||
namespace inversion {
|
||||
|
||||
// Functions used --->
|
||||
// int mergeSort(int* arr, int* temp, int left, int right);
|
||||
// int merge(int* arr, int* temp, int left, int mid, int right);
|
||||
// int countInversion(int* arr, const int size);
|
||||
// void show(int* arr, const int size);
|
||||
|
||||
/**
|
||||
* Function to merge two sub-arrays. merge() function is called
|
||||
* from mergeSort() to merge the array after it split for sorting
|
||||
* by the mergeSort() funtion.
|
||||
*
|
||||
* In this case the merge fuction will also count and return
|
||||
* inversions detected when merging the sub arrays.
|
||||
*
|
||||
* @param arr input array, data-menber of vector
|
||||
* @param temp stores the resultant merged array
|
||||
* @param left lower bound of arr[] and left-sub-array
|
||||
* @param mid midpoint, upper bound of left sub-array,
|
||||
* (mid+1) gives the lower bound of right-sub-array
|
||||
* @param right upper bound of arr[] and right-sub-array
|
||||
* @returns number of inversions found in merge step
|
||||
*/
|
||||
template<typename T>
|
||||
int merge(T* arr, T* temp, int left, int mid, int right) {
|
||||
int i = left; /* i --> index of left sub-array */
|
||||
int j = mid + 1; /* j --> index for right sub-array */
|
||||
int k = left; /* k --> index for resultant array temp */
|
||||
int inv_count = 0; // inversion count
|
||||
|
||||
while ((i <= mid) && (j <= right)) {
|
||||
if (arr[i] <= arr[j]) {
|
||||
temp[k++] = arr[i++];
|
||||
} else {
|
||||
temp[k++] = arr[j++];
|
||||
inv_count +=
|
||||
(mid - i +
|
||||
1); // tricky; may vary depending on selection of sub-array
|
||||
}
|
||||
}
|
||||
// Add remaining elements from the larger subarray to the end of temp
|
||||
while (i <= mid) {
|
||||
temp[k++] = arr[i++];
|
||||
}
|
||||
while (j <= right) {
|
||||
temp[k++] = arr[j++];
|
||||
}
|
||||
// Copy temp[] to arr[]
|
||||
for (k = left; k <= right; k++) {
|
||||
arr[k] = temp[k];
|
||||
}
|
||||
return inv_count;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* The mergeSort() function implements Merge Sort, a
|
||||
* Divide and conquer algorithm, it divides the input
|
||||
* array into two halves and calls itself for each
|
||||
* sub-array and then calls the merge() function to
|
||||
* merge the two halves.
|
||||
*
|
||||
* @param arr - array to be sorted
|
||||
* @param temp - merged resultant array
|
||||
* @param left - lower bound of array
|
||||
* @param right - upper bound of array
|
||||
* @returns number of inversions in array
|
||||
*/
|
||||
template<typename T>
|
||||
int mergeSort(T* arr, T* temp, int left, int right) {
|
||||
int mid = 0, inv_count = 0;
|
||||
if (right > left) {
|
||||
// midpoint to split the array
|
||||
mid = (right + left) / 2;
|
||||
// Add inversions in left and right sub-arrays
|
||||
inv_count += mergeSort(arr, temp, left, mid); // left sub-array
|
||||
inv_count += mergeSort(arr, temp, mid + 1, right);
|
||||
|
||||
// inversions in the merge step
|
||||
inv_count += merge(arr, temp, left, mid, right);
|
||||
}
|
||||
return inv_count;
|
||||
}
|
||||
|
||||
/**
|
||||
* Funtion countInversion() returns the number of inversion
|
||||
* present in the input array. Inversions are an estimate of
|
||||
* how close or far off the array is to being sorted.
|
||||
*
|
||||
* Number of inversions in a sorted array is 0.
|
||||
* Number of inversion in an array[1...n] sorted in
|
||||
* non-ascending order is n(n-1)/2, since each pair of elements
|
||||
* contitute an inversion.
|
||||
*
|
||||
* @param arr - array, data member of std::vector<int>, input for counting
|
||||
* inversions
|
||||
* @param array_size - number of elementa in the array
|
||||
* @returns number of inversions in input array, sorts the array
|
||||
*/
|
||||
template<class T>
|
||||
int countInversion(T* arr, const T size) {
|
||||
std::vector<T> temp;
|
||||
temp.reserve(size);
|
||||
temp.assign(size, 0);
|
||||
return mergeSort(arr, temp.data(), 0, size - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* UTILITY function to print array.
|
||||
* @param arr[] array to print
|
||||
* @param array_size size of input array arr[]
|
||||
* @returns void
|
||||
*
|
||||
*/
|
||||
template <typename T>
|
||||
void show(T* arr, const int array_size) {
|
||||
std::cout << "Printing array: \n";
|
||||
for (int i = 0; i < array_size; i++) {
|
||||
std::cout << " " << arr[i];
|
||||
}
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
} // namespace inversion
|
||||
} // namespace sorting
|
||||
|
||||
/**
|
||||
* @brief Test implementations
|
||||
* @returns void
|
||||
*/
|
||||
void test() {
|
||||
// Test 1
|
||||
std::vector<int> arr1 = {
|
||||
100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,
|
||||
83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,
|
||||
66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50,
|
||||
49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
|
||||
32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
|
||||
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
|
||||
int size1 = arr1.size();
|
||||
int inv_count1 = 4950;
|
||||
int result1 = sorting::inversion::countInversion(arr1.data(), size1);
|
||||
assert(inv_count1 == result1);
|
||||
// Test 2
|
||||
std::vector<int> arr2 = {22, 66, 75, 23, 11, 87, 2, 44, 98, 43};
|
||||
int size2 = arr2.size();
|
||||
int inv_count2 = 20;
|
||||
int result2 = sorting::inversion::countInversion(arr2.data(), size2);
|
||||
assert(inv_count2 == result2);
|
||||
// Test 3
|
||||
std::vector<int> arr3 = {33, 45, 65, 76, 1, 2, 5, 7, 88, 12};
|
||||
int size3 = arr3.size();
|
||||
int inv_count3 = 21;
|
||||
int result3 = sorting::inversion::countInversion(arr3.data(), size3);
|
||||
assert(inv_count3 == result3);
|
||||
}
|
||||
|
||||
// /**
|
||||
// * Program Body contains all main funtionality
|
||||
// * @returns void
|
||||
// */
|
||||
// void body() {
|
||||
// // Input your own sequence
|
||||
// int size, input;
|
||||
// std::cout << "Enter number of elements:";
|
||||
// std::cin >> size;
|
||||
|
||||
// std::vector<int> arr;
|
||||
// arr.reserve(size);
|
||||
|
||||
// std::cout << "Enter elements -->\n";
|
||||
// for (int i=1; i<=size; i++) {
|
||||
// std::cout << "Element "<< i <<" :";
|
||||
// std::cin >> input;
|
||||
// arr.push_back(input);
|
||||
// }
|
||||
|
||||
// if (size != arr.size()) {
|
||||
// size = arr.size();
|
||||
// }
|
||||
|
||||
// std::cout << "\n";
|
||||
// sorting::inversion::show(arr.data(), size);
|
||||
// std::cout << "\n";
|
||||
|
||||
// // Counting inversions
|
||||
// std::cout << "\nThe number of inversions: "<<
|
||||
// sorting::inversion::countInversion(arr.data(), size) << "\n";
|
||||
|
||||
// // Output sorted array
|
||||
// std::cout << "\nSorted array --> \n";
|
||||
// sorting::inversion::show(arr.data(), size);
|
||||
// }
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
// Run test implementations
|
||||
test();
|
||||
// // Main Program
|
||||
// body();
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user