style: remove unused variables (#2946)

Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
This commit is contained in:
Piotr Idzik
2025-08-14 06:27:18 +02:00
committed by GitHub
parent 3f0409d7cc
commit d4962c3032
12 changed files with 11 additions and 15 deletions

View File

@@ -379,7 +379,6 @@ class HillCipher {
int mat_determinant = det_encrypt < 0 ? det_encrypt % L : det_encrypt;
matrix<double> tmp_inverse = get_inverse(encrypt_key);
double d2 = determinant_lu(decrypt_key);
// find co-prime factor for inversion
int det_inv = -1;

View File

@@ -33,7 +33,7 @@ public:
};
void RBtree::insert()
{
int z, i = 0;
int z;
cout << "\nEnter key of the node to be inserted: ";
cin >> z;
node *p, *q;

View File

@@ -67,7 +67,6 @@ static void test() {
// Output: 22
// Explanation: Subarray 12, 8, -8, 9, -9, 10 gives the maximum sum, that is 22.
int n = 7; // size of the array
std::vector<int> arr = {8, -8, 9, -9, 10, -11, 12};
assert(dynamic_programming::maxCircularSum(arr) == 22); // this ensures that the algorithm works as expected

View File

@@ -254,7 +254,7 @@ using graph::HKGraph;
*/
void tests(){
// Sample test case 1
int v1a = 3, v1b = 5, e1 = 2; // vertices of left side, right side and edges
int v1a = 3, v1b = 5; // vertices of left side, right side and edges
HKGraph g1(v1a, v1b); // execute the algorithm
g1.addEdge(0,1);
@@ -266,7 +266,7 @@ void tests(){
assert(res1 == expected_res1); // assert check to ensure that the algorithm executed correctly for test 1
// Sample test case 2
int v2a = 4, v2b = 4, e2 = 6; // vertices of left side, right side and edges
int v2a = 4, v2b = 4; // vertices of left side, right side and edges
HKGraph g2(v2a, v2b); // execute the algorithm
g2.addEdge(1,1);
@@ -282,7 +282,7 @@ void tests(){
assert(res2 == expected_res2); // assert check to ensure that the algorithm executed correctly for test 2
// Sample test case 3
int v3a = 6, v3b = 6, e3 = 4; // vertices of left side, right side and edges
int v3a = 6, v3b = 6; // vertices of left side, right side and edges
HKGraph g3(v3a, v3b); // execute the algorithm
g3.addEdge(0,1);

View File

@@ -248,7 +248,7 @@ using double_hashing::totalSize;
* @returns 0 on success
*/
int main() {
int cmd = 0, hash = 0, key = 0;
int cmd = 0, key = 0;
std::cout << "Enter the initial size of Hash Table. = ";
std::cin >> totalSize;
table = std::vector<Entry>(totalSize);

View File

@@ -222,7 +222,7 @@ using linear_probing::totalSize;
* @returns 0 on success
*/
int main() {
int cmd = 0, hash = 0, key = 0;
int cmd = 0, key = 0;
std::cout << "Enter the initial size of Hash Table. = ";
std::cin >> totalSize;
table = std::vector<Entry>(totalSize);

View File

@@ -244,7 +244,7 @@ using quadratic_probing::totalSize;
* @returns None
*/
int main() {
int cmd = 0, hash = 0, key = 0;
int cmd = 0, key = 0;
std::cout << "Enter the initial size of Hash Table. = ";
std::cin >> totalSize;
table = std::vector<Entry>(totalSize);

View File

@@ -103,7 +103,7 @@ namespace machine_learning {
void update_weights(const std::valarray<double> &x,
std::vector<std::valarray<double>> *W,
std::valarray<double> *D, double alpha, int R) {
int j = 0, k = 0;
int j = 0;
int num_out = W->size(); // number of SOM output nodes
// int num_features = x.size(); // number of data features

View File

@@ -367,8 +367,6 @@ std::vector<float> predict_OLS_regressor(std::vector<std::vector<T>> const &X,
/** Self test checks */
void ols_test() {
int F = 3, N = 5;
/* test function = x^2 -5 */
std::cout << "Test 1 (quadratic function)....";
// create training data set with features = x, x^2, x^3

View File

@@ -18,7 +18,7 @@ static float eqd(float y) { return 0.5 * (cos(y) + 2); }
/** Main function */
int main() {
float y, x1, x2, x3, sum, s, a, f1, f2, gd;
float y, x1, x2, sum;
int i, n;
for (i = 0; i < 10; i++) {

View File

@@ -128,7 +128,7 @@ int main() {
cout.tie(0);
ll t;
cin >> t;
ll i, j, x;
ll i, x;
while (t--) {
cin >> mat_size;
for (i = 0; i < mat_size; i++) {

View File

@@ -29,7 +29,7 @@ bool mycmp(query x, query y) {
}
int main() {
int n, t, i, j, k = 0;
int n, t, i;
scanf("%d", &n);
for (i = 0; i < n; i++) scanf("%d", &a[i]);
bucket_size = ceil(sqrt(n));