Files
C-Plus-Plus/dynamic_programming/trapped_rainwater2.cpp
Kanav Goyal 145111cd7e feat: implement optimized two-pointer approach for trapping rainwater (#2975) (#2976)
* feat: optimize trapping rainwater

* incorporate changes

---------

Co-authored-by: realstealthninja <68815218+realstealthninja@users.noreply.github.com>
2025-08-15 09:24:59 +00:00

112 lines
3.8 KiB
C++

/**
* @file
* @brief Implementation of the [Trapped Rainwater
* Problem](https://www.geeksforgeeks.org/trapping-rain-water/)
* @details
* This implementation calculates the total trapped rainwater using a
* two-pointer approach. It maintains two pointers (`left` and `right`) and
* tracks the maximum height seen so far from both ends (`leftMax` and
* `rightMax`). At each step, the algorithm decides which side to process based
* on which boundary is smaller, ensuring O(n) time and O(1) space complexity.
* @author [kanavgoyal898](https://github.com/kanavgoyal898)
*/
#include <algorithm> /// For std::min and std::max
#include <cassert> /// For assert
#include <cstddef> /// For std::size_t
#include <cstdint> /// For std::uint32_t
#include <vector> /// For std::vector
/*
* @namespace
* @brief Dynamic Programming Algorithms
*/
namespace dynamic_programming {
/**
* @brief Function to calculate the trapped rainwater
* @param heights Array representing the heights of walls
* @return The amount of trapped rainwater
*/
uint32_t trappedRainwater(const std::vector<uint32_t>& heights) {
std::size_t n = heights.size();
if (n <= 2)
return 0; // Not enough walls to trap water
std::size_t left = 0, right = n - 1;
uint32_t leftMax = 0, rightMax = 0, trappedWater = 0;
// Traverse from both ends towards the center
while (left < right) {
if (heights[left] < heights[right]) {
// Water trapped depends on the tallest wall to the left
if (heights[left] >= leftMax)
leftMax = heights[left]; // Update left max
else
trappedWater +=
leftMax - heights[left]; // Water trapped at current left
++left;
} else {
// Water trapped depends on the tallest wall to the right
if (heights[right] >= rightMax)
rightMax = heights[right]; // Update right max
else
trappedWater +=
rightMax -
heights[right]; // Water trapped at current right
--right;
}
}
return trappedWater;
}
} // namespace dynamic_programming
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
std::vector<uint32_t> test_basic = {0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1};
assert(dynamic_programming::trappedRainwater(test_basic) == 6);
std::vector<uint32_t> test_peak_under_water = {3, 0, 2, 0, 4};
assert(dynamic_programming::trappedRainwater(test_peak_under_water) == 7);
std::vector<uint32_t> test_bucket = {5, 1, 5};
assert(dynamic_programming::trappedRainwater(test_bucket) == 4);
std::vector<uint32_t> test_skewed_bucket = {4, 1, 5};
assert(dynamic_programming::trappedRainwater(test_skewed_bucket) == 3);
std::vector<uint32_t> test_empty = {};
assert(dynamic_programming::trappedRainwater(test_empty) == 0);
std::vector<uint32_t> test_flat = {0, 0, 0, 0, 0};
assert(dynamic_programming::trappedRainwater(test_flat) == 0);
std::vector<uint32_t> test_no_trapped_water = {1, 1, 2, 4, 0, 0, 0};
assert(dynamic_programming::trappedRainwater(test_no_trapped_water) == 0);
std::vector<uint32_t> test_single_elevation = {5};
assert(dynamic_programming::trappedRainwater(test_single_elevation) == 0);
std::vector<uint32_t> test_two_point_elevation = {5, 1};
assert(dynamic_programming::trappedRainwater(test_two_point_elevation) ==
0);
std::vector<uint32_t> test_large_elevation_map_difference = {5, 1, 6, 1,
7, 1, 8};
assert(dynamic_programming::trappedRainwater(
test_large_elevation_map_difference) == 15);
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}