mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 18:46:50 +08:00
* Update gcd_of_n_numbers.cpp * Update gcd_of_n_numbers.cpp Reformatting code, comment and test cases, change array data type. * Update gcd_of_n_numbers.cpp * Update gcd_of_n_numbers.cpp * Update gcd_of_n_numbers.cpp * Update gcd_of_n_numbers.cpp
115 lines
3.2 KiB
C++
115 lines
3.2 KiB
C++
/**
|
|
* @file
|
|
* @brief This program aims at calculating the GCD of n numbers
|
|
*
|
|
* @details
|
|
* The GCD of n numbers can be calculated by
|
|
* repeatedly calculating the GCDs of pairs of numbers
|
|
* i.e. \f$\gcd(a, b, c)\f$ = \f$\gcd(\gcd(a, b), c)\f$
|
|
* Euclidean algorithm helps calculate the GCD of each pair of numbers
|
|
* efficiently
|
|
*
|
|
* @see gcd_iterative_euclidean.cpp, gcd_recursive_euclidean.cpp
|
|
*/
|
|
#include <algorithm> /// for std::abs
|
|
#include <array> /// for std::array
|
|
#include <cassert> /// for assert
|
|
#include <iostream> /// for IO operations
|
|
|
|
/**
|
|
* @namespace math
|
|
* @brief Maths algorithms
|
|
*/
|
|
namespace math {
|
|
/**
|
|
* @namespace gcd_of_n_numbers
|
|
* @brief Compute GCD of numbers in an array
|
|
*/
|
|
namespace gcd_of_n_numbers {
|
|
/**
|
|
* @brief Function to compute GCD of 2 numbers x and y
|
|
* @param x First number
|
|
* @param y Second number
|
|
* @return GCD of x and y via recursion
|
|
*/
|
|
int gcd_two(int x, int y) {
|
|
// base cases
|
|
if (y == 0) {
|
|
return x;
|
|
}
|
|
if (x == 0) {
|
|
return y;
|
|
}
|
|
return gcd_two(y, x % y); // Euclidean method
|
|
}
|
|
|
|
/**
|
|
* @brief Function to check if all elements in the array are 0
|
|
* @param a Array of numbers
|
|
* @return 'True' if all elements are 0
|
|
* @return 'False' if not all elements are 0
|
|
*/
|
|
template <std::size_t n>
|
|
bool check_all_zeros(const std::array<int, n> &a) {
|
|
// Use std::all_of to simplify zero-checking
|
|
return std::all_of(a.begin(), a.end(), [](int x) { return x == 0; });
|
|
}
|
|
|
|
/**
|
|
* @brief Main program to compute GCD using the Euclidean algorithm
|
|
* @param a Array of integers to compute GCD for
|
|
* @return GCD of the numbers in the array or std::nullopt if undefined
|
|
*/
|
|
template <std::size_t n>
|
|
int gcd(const std::array<int, n> &a) {
|
|
// GCD is undefined if all elements in the array are 0
|
|
if (check_all_zeros(a)) {
|
|
return -1; // Use std::optional to represent undefined GCD
|
|
}
|
|
|
|
// divisors can be negative, we only want the positive value
|
|
int result = std::abs(a[0]);
|
|
for (std::size_t i = 1; i < n; ++i) {
|
|
result = gcd_two(result, std::abs(a[i]));
|
|
if (result == 1) {
|
|
break; // Further computations still result in gcd of 1
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
} // namespace gcd_of_n_numbers
|
|
} // namespace math
|
|
|
|
/**
|
|
* @brief Self-test implementation
|
|
* @return void
|
|
*/
|
|
static void test() {
|
|
std::array<int, 1> array_1 = {0};
|
|
std::array<int, 1> array_2 = {1};
|
|
std::array<int, 2> array_3 = {0, 2};
|
|
std::array<int, 3> array_4 = {-60, 24, 18};
|
|
std::array<int, 4> array_5 = {100, -100, -100, 200};
|
|
std::array<int, 5> array_6 = {0, 0, 0, 0, 0};
|
|
std::array<int, 7> array_7 = {10350, -24150, 0, 17250, 37950, -127650, 51750};
|
|
std::array<int, 7> array_8 = {9500000, -12121200, 0, 4444, 0, 0, 123456789};
|
|
|
|
assert(math::gcd_of_n_numbers::gcd(array_1) == -1);
|
|
assert(math::gcd_of_n_numbers::gcd(array_2) == 1);
|
|
assert(math::gcd_of_n_numbers::gcd(array_3) == 2);
|
|
assert(math::gcd_of_n_numbers::gcd(array_4) == 6);
|
|
assert(math::gcd_of_n_numbers::gcd(array_5) == 100);
|
|
assert(math::gcd_of_n_numbers::gcd(array_6) == -1);
|
|
assert(math::gcd_of_n_numbers::gcd(array_7) == 3450);
|
|
assert(math::gcd_of_n_numbers::gcd(array_8) == 1);
|
|
}
|
|
|
|
/**
|
|
* @brief Main function
|
|
* @return 0 on exit
|
|
*/
|
|
int main() {
|
|
test(); // run self-test implementation
|
|
return 0;
|
|
}
|