Files
C-Plus-Plus/data_structures/dsu_path_compression.cpp
2021-09-01 07:15:29 +05:30

184 lines
6.2 KiB
C++

/**
* @file
* @brief [DSU(Disjoint sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure)
* @details
* dsu : It is a very powerful data structure which keeps track of different
* clusters(sets) of elements, these sets are disjoint(doesnot have a common element).
* Disjoint sets uses cases : for finding connected components in a graph,
* used in Kruskal's algorithm for finding Minimum Spanning tree.
* Operations that can be performed:
* 1) UnionSet(i,j): add(element i and j to the set)
* 2) findSet(i): returns the representative of the set to which i belogngs to.
* 3) get_max(i),get_min(i) : returns the maximum and minimum
* Below is the class-based approach which uses the heuristic of path compression.
* Using path compression in findSet(i),we are able to get to the representative of i
* in O(1) time.
* @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT)
* @see dsu_union_rank.cpp
*/
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
using std::cout;
using std::endl;
using std::vector;
/**
* @brief Disjoint sets union data structure, class based representation.
* @param n number of elements
*/
class dsu{
private:
vector<int> p; ///<keeps track of the parent of ith element
vector<int> depth; ///<tracks the depth(rank) of i in the tree
vector<int> setSize;///<size of each chunk(set)
vector<int> maxElement;/// <maximum of each set to which i belongs to
vector<int> minElement;/// <minimum of each set to which i belongs to
public:
/**
* @brief contructor for initialising all data members.
* @param n number of elements
*/
explicit dsu(int n){
p.assign(n,0);
//initially all of them are their own parents.
for(int i=0;i<n;i++){
p[i] = i;
}
//initially all have depth =0
depth.assign(n,0);
maxElement.assign(n,0);
minElement.assign(n,0);
for(int i=0;i<n;i++){
depth[i] = 0;
maxElement[i] = i;
minElement[i] = i;
}
setSize.assign(n,0);
//initially set size will be 1
for(int i=0;i<n;i++){
setSize[i]=1;
}
}
/**
* @brief Method to find the representative of the set to which i belongs to, T(n) = O(1)
* @param i element of some set
* @returns representative of the set to which i belongs to.
*/
int findSet(int i){
/// using path compression
if(p[i]==i){
return i;
}
return (p[i] = findSet(p[i]));
}
/**
* @brief Method that combines two disjoint sets to which i and j belongs to
* and make a single set having a common representative.
* @param i element of some set
* @param j element of some set
* @returns void
*/
void UnionSet(int i,int j){
//check if both belongs to same set or not
if(isSame(i,j)){
return;
}
//we find the representative of the i and j
int x = findSet(i);
int y = findSet(j);
//always keeping the min as x
//shallow tree
if(depth[x]>depth[y]){
std::swap(x,y);
}
//making the shallower root's parent the deeper root
p[x] = y;
//if same depth then increase one's depth
if(depth[x] == depth[y]){
depth[y]++;
}
//total size of the resultant set.
setSize[y] += setSize[x];
//changing the maximum elements
maxElement[y] = std::max(maxElement[x],maxElement[y]);
minElement[y] = std::min(minElement[x],minElement[y]);
}
/**
* @brief A utility function which check whether i and j belongs to
* same set or not
* @param i element of some set
* @param j element of some set
* @returns `true` if element `i` and `j` ARE in the same set
* @returns `false` if element `i` and `j` are NOT in same set
*/
bool isSame(int i,int j){
if(findSet(i) == findSet(j)){
return true;
}
return false;
}
/**
* @brief prints the minimum, maximum and size of the set to which i belongs to
* @param i element of some set
* @returns void
*/
void get(int i){
cout << "min:" << get_min(i) << " max:" << get_max(i) << " size of set:" <<size(i) << endl;
}
/**
* @brief A utility function that returns the size of the set to which i belongs to
* @param i element of some set
* @returns size of the set to which i belongs to
*/
int size(int i){
return setSize[findSet(i)];
}
/**
* @brief A utility function that returns the max element of the set to which i belongs to
* @param i element of some set
* @returns maximum of the set to which i belongs to
*/
int get_max(int i){
return maxElement[findSet(i)];
}
/**
* @brief A utility function that returns the min element of the set to which i belongs to
* @param i element of some set
* @returns minimum of the set to which i belongs to
*/
int get_min(int i){
return minElement[findSet(i)];
}
};
/**
* @brief Main function
* @returns 0 on exit
* */
int main(){
int n = 10;///< number of items
dsu d(n+1);///< object of class disjoint sets
//set 1
cout << "set 1:"<<endl;
d.UnionSet(1,2); //performs union operation on 1 and 2
d.UnionSet(1,4);
cout << "Representative of "<< 4 << " is "<< d.findSet(4) << endl; //find the representative of the set which 4 belongs to.
d.get(4); //print min max and size of set.
//set 2
cout << "\nset 2"<<endl;
d.UnionSet(3,5);
d.UnionSet(5,6);
d.UnionSet(5,7);
cout << "Representative of " << 7 <<" is " << d.findSet(7) << endl;
d.get(3);
return 0;
}