mirror of
https://github.com/babysor/Realtime-Voice-Clone-Chinese.git
synced 2026-02-03 18:43:41 +08:00
Compare commits
28 Commits
babysor-pa
...
babysor-pa
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
918933ea86 | ||
|
|
1cde29d5f3 | ||
|
|
4b8fa992b7 | ||
|
|
42789babd8 | ||
|
|
2354bb42d1 | ||
|
|
4358f6f353 | ||
|
|
5971555319 | ||
|
|
6f84026c51 | ||
|
|
a30657ecf5 | ||
|
|
cc250af1f6 | ||
|
|
156723e37c | ||
|
|
1862d2145b | ||
|
|
72a22d448b | ||
|
|
98d38d84c3 | ||
|
|
7ab86c6f4c | ||
|
|
ab79881480 | ||
|
|
fd93b40398 | ||
|
|
dbf01347fc | ||
|
|
28f9173dfa | ||
|
|
d073e1f349 | ||
|
|
baa8b5005d | ||
|
|
d54f4fb631 | ||
|
|
7353888d35 | ||
|
|
e9ce943f6c | ||
|
|
77c145328c | ||
|
|
3bce6bbbe7 | ||
|
|
9dd8ea11e5 | ||
|
|
5a0d77e699 |
15
README-CN.md
15
README-CN.md
@@ -29,6 +29,7 @@
|
||||
> 如果在用 pip 方式安装的时候出现 `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2)` 这个错误可能是 python 版本过低,3.9 可以安装成功
|
||||
* 安装 [ffmpeg](https://ffmpeg.org/download.html#get-packages)。
|
||||
* 运行`pip install -r requirements.txt` 来安装剩余的必要包。
|
||||
> 这里的环境建议使用 `Repo Tag 0.0.1` `Pytorch1.9.0 with Torchvision0.10.0 and cudatoolkit10.2` `requirements.txt` `webrtcvad-wheels` 因为 `requiremants.txt` 是在几个月前导出的,所以不适配新版本
|
||||
* 安装 webrtcvad `pip install webrtcvad-wheels`。
|
||||
|
||||
或者
|
||||
@@ -113,7 +114,7 @@
|
||||
> 假如你下载的 `aidatatang_200zh`文件放在D盘,`train`文件路径为 `D:\data\aidatatang_200zh\corpus\train` , 你的`datasets_root`就是 `D:\data\`
|
||||
|
||||
* 训练合成器:
|
||||
`python synthesizer_train.py mandarin <datasets_root>/SV2TTS/synthesizer`
|
||||
`python ./control/cli/synthesizer_train.py mandarin <datasets_root>/SV2TTS/synthesizer`
|
||||
|
||||
* 当您在训练文件夹 *synthesizer/saved_models/* 中看到注意线显示和损失满足您的需要时,请转到`启动程序`一步。
|
||||
|
||||
@@ -124,7 +125,7 @@
|
||||
| --- | ----------- | ----- | ----- |
|
||||
| 作者 | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [百度盘链接](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps 用3个开源数据集混合训练
|
||||
| 作者 | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [百度盘链接](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) 提取码:om7f | | 25k steps 用3个开源数据集混合训练, 切换到tag v0.0.1使用
|
||||
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码:1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|
||||
|@FawenYo | https://yisiou-my.sharepoint.com/:u:/g/personal/lawrence_cheng_fawenyo_onmicrosoft_com/EWFWDHzee-NNg9TWdKckCc4BC7bK2j9cCbOWn0-_tK0nOg?e=n0gGgC | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|
||||
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码:2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 注意:根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 并切换到tag v0.0.1使用
|
||||
|
||||
#### 2.4训练声码器 (可选)
|
||||
@@ -135,14 +136,14 @@
|
||||
|
||||
|
||||
* 训练wavernn声码器:
|
||||
`python vocoder_train.py <trainid> <datasets_root>`
|
||||
`python ./control/cli/vocoder_train.py <trainid> <datasets_root>`
|
||||
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
|
||||
|
||||
* 训练hifigan声码器:
|
||||
`python vocoder_train.py <trainid> <datasets_root> hifigan`
|
||||
`python ./control/cli/vocoder_train.py <trainid> <datasets_root> hifigan`
|
||||
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
|
||||
* 训练fregan声码器:
|
||||
`python vocoder_train.py <trainid> <datasets_root> --config config.json fregan`
|
||||
`python ./control/cli/vocoder_train.py <trainid> <datasets_root> --config config.json fregan`
|
||||
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
|
||||
* 将GAN声码器的训练切换为多GPU模式:修改GAN文件夹下.json文件中的"num_gpus"参数
|
||||
### 3. 启动程序或工具箱
|
||||
@@ -173,14 +174,14 @@
|
||||
|
||||
* 下载aidatatang_200zh数据集并解压:确保您可以访问 *train* 文件夹中的所有音频文件(如.wav)
|
||||
* 进行音频和梅尔频谱图预处理:
|
||||
`python pre4ppg.py <datasets_root> -d {dataset} -n {number}`
|
||||
`python ./control/cli/pre4ppg.py <datasets_root> -d {dataset} -n {number}`
|
||||
可传入参数:
|
||||
* `-d {dataset}` 指定数据集,支持 aidatatang_200zh, 不传默认为aidatatang_200zh
|
||||
* `-n {number}` 指定并行数,CPU 11700k在8的情况下,需要运行12到18小时!待优化
|
||||
> 假如你下载的 `aidatatang_200zh`文件放在D盘,`train`文件路径为 `D:\data\aidatatang_200zh\corpus\train` , 你的`datasets_root`就是 `D:\data\`
|
||||
|
||||
* 训练合成器, 注意在上一步先下载好`ppg2mel.yaml`, 修改里面的地址指向预训练好的文件夹:
|
||||
`python ppg2mel_train.py --config .\ppg2mel\saved_models\ppg2mel.yaml --oneshotvc `
|
||||
`python ./control/cli/ppg2mel_train.py --config .\ppg2mel\saved_models\ppg2mel.yaml --oneshotvc `
|
||||
* 如果想要继续上一次的训练,可以通过`--load .\ppg2mel\saved_models\<old_pt_file>` 参数指定一个预训练模型文件。
|
||||
|
||||
#### 4.2 启动工具箱VC模式
|
||||
|
||||
223
README-LINUX-CN.md
Normal file
223
README-LINUX-CN.md
Normal file
@@ -0,0 +1,223 @@
|
||||
## 实时语音克隆 - 中文/普通话
|
||||

|
||||
|
||||
[](http://choosealicense.com/licenses/mit/)
|
||||
|
||||
### [English](README.md) | 中文
|
||||
|
||||
### [DEMO VIDEO](https://www.bilibili.com/video/BV17Q4y1B7mY/) | [Wiki教程](https://github.com/babysor/MockingBird/wiki/Quick-Start-(Newbie)) | [训练教程](https://vaj2fgg8yn.feishu.cn/docs/doccn7kAbr3SJz0KM0SIDJ0Xnhd)
|
||||
|
||||
## 特性
|
||||
🌍 **中文** 支持普通话并使用多种中文数据集进行测试:aidatatang_200zh, magicdata, aishell3, biaobei, MozillaCommonVoice, data_aishell 等
|
||||
|
||||
🤩 **Easy & Awesome** 仅需下载或新训练合成器(synthesizer)就有良好效果,复用预训练的编码器/声码器,或实时的HiFi-GAN作为vocoder
|
||||
|
||||
🌍 **Webserver Ready** 可伺服你的训练结果,供远程调用。
|
||||
|
||||
🤩 **感谢各位小伙伴的支持,本项目将开启新一轮的更新**
|
||||
|
||||
## 1.快速开始
|
||||
### 1.1 建议环境
|
||||
- Ubuntu 18.04
|
||||
- Cuda 11.7 && CuDNN 8.5.0
|
||||
- Python 3.8 或 3.9
|
||||
- Pytorch 2.0.1 <post cuda-11.7>
|
||||
### 1.2 环境配置
|
||||
```shell
|
||||
# 下载前建议更换国内镜像源
|
||||
|
||||
conda create -n sound python=3.9
|
||||
|
||||
conda activate sound
|
||||
|
||||
git clone https://github.com/babysor/MockingBird.git
|
||||
|
||||
cd MockingBird
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
pip install webrtcvad-wheels
|
||||
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
|
||||
```
|
||||
|
||||
### 1.3 模型准备
|
||||
> 当实在没有设备或者不想慢慢调试,可以使用社区贡献的模型(欢迎持续分享):
|
||||
|
||||
| 作者 | 下载链接 | 效果预览 | 信息 |
|
||||
| --- | ----------- | ----- | ----- |
|
||||
| 作者 | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [百度盘链接](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps 用3个开源数据集混合训练
|
||||
| 作者 | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [百度盘链接](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) 提取码:om7f | | 25k steps 用3个开源数据集混合训练, 切换到tag v0.0.1使用
|
||||
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码:1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|
||||
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码:2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 注意:根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 并切换到tag v0.0.1使用
|
||||
|
||||
### 1.4 文件结构准备
|
||||
文件结构准备如下所示,算法将自动遍历synthesizer下的.pt模型文件。
|
||||
```
|
||||
# 以第一个 pretrained-11-7-21_75k.pt 为例
|
||||
|
||||
└── data
|
||||
└── ckpt
|
||||
└── synthesizer
|
||||
└── pretrained-11-7-21_75k.pt
|
||||
```
|
||||
### 1.5 运行
|
||||
```
|
||||
python web.py
|
||||
```
|
||||
|
||||
## 2.模型训练
|
||||
### 2.1 数据准备
|
||||
#### 2.1.1 数据下载
|
||||
``` shell
|
||||
# aidatatang_200zh
|
||||
|
||||
wget https://openslr.elda.org/resources/62/aidatatang_200zh.tgz
|
||||
```
|
||||
``` shell
|
||||
# MAGICDATA
|
||||
|
||||
wget https://openslr.magicdatatech.com/resources/68/train_set.tar.gz
|
||||
|
||||
wget https://openslr.magicdatatech.com/resources/68/dev_set.tar.gz
|
||||
|
||||
wget https://openslr.magicdatatech.com/resources/68/test_set.tar.gz
|
||||
```
|
||||
``` shell
|
||||
# AISHELL-3
|
||||
|
||||
wget https://openslr.elda.org/resources/93/data_aishell3.tgz
|
||||
```
|
||||
```shell
|
||||
# Aishell
|
||||
|
||||
wget https://openslr.elda.org/resources/33/data_aishell.tgz
|
||||
```
|
||||
#### 2.1.2 数据批量解压
|
||||
```shell
|
||||
# 该指令为解压当前目录下的所有压缩文件
|
||||
|
||||
for gz in *.gz; do tar -zxvf $gz; done
|
||||
```
|
||||
### 2.2 encoder模型训练
|
||||
#### 2.2.1 数据预处理:
|
||||
需要先在`pre.py `头部加入:
|
||||
```python
|
||||
import torch
|
||||
torch.multiprocessing.set_start_method('spawn', force=True)
|
||||
```
|
||||
使用以下指令对数据预处理:
|
||||
```shell
|
||||
python pre.py <datasets_root> \
|
||||
-d <datasets_name>
|
||||
```
|
||||
其中`<datasets_root>`为原数据集路径,`<datasets_name>` 为数据集名称。
|
||||
|
||||
支持 `librispeech_other`,`voxceleb1`,`aidatatang_200zh`,使用逗号分割处理多数据集。
|
||||
|
||||
### 2.2.2 encoder模型训练:
|
||||
超参数文件路径:`models/encoder/hparams.py`
|
||||
```shell
|
||||
python encoder_train.py <name> \
|
||||
<datasets_root>/SV2TTS/encoder
|
||||
```
|
||||
其中 `<name>` 是训练产生文件的名称,可自行修改。
|
||||
|
||||
其中 `<datasets_root>` 是经过 `Step 2.1.1` 处理过后的数据集路径。
|
||||
#### 2.2.3 开启encoder模型训练数据可视化(可选)
|
||||
```shell
|
||||
visdom
|
||||
```
|
||||
|
||||
### 2.3 synthesizer模型训练
|
||||
#### 2.3.1 数据预处理:
|
||||
```shell
|
||||
python pre.py <datasets_root> \
|
||||
-d <datasets_name> \
|
||||
-o <datasets_path> \
|
||||
-n <number>
|
||||
```
|
||||
`<datasets_root>` 为原数据集路径,当你的`aidatatang_200zh`路径为`/data/aidatatang_200zh/corpus/train`时,`<datasets_root>` 为 `/data/`。
|
||||
|
||||
`<datasets_name>` 为数据集名称。
|
||||
|
||||
`<datasets_path>` 为数据集处理后的保存路径。
|
||||
|
||||
`<number>` 为数据集处理时进程数,根据CPU情况调整大小。
|
||||
|
||||
#### 2.3.2 新增数据预处理:
|
||||
```shell
|
||||
python pre.py <datasets_root> \
|
||||
-d <datasets_name> \
|
||||
-o <datasets_path> \
|
||||
-n <number> \
|
||||
-s
|
||||
```
|
||||
当新增数据集时,应加 `-s` 选择数据拼接,不加则为覆盖。
|
||||
#### 2.3.3 synthesizer模型训练:
|
||||
超参数文件路径:`models/synthesizer/hparams.py`,需将`MockingBird/control/cli/synthesizer_train.py`移成`MockingBird/synthesizer_train.py`结构。
|
||||
```shell
|
||||
python synthesizer_train.py <name> <datasets_path> \
|
||||
-m <out_dir>
|
||||
```
|
||||
其中 `<name>` 是训练产生文件的名称,可自行修改。
|
||||
|
||||
其中 `<datasets_path>` 是经过 `Step 2.2.1` 处理过后的数据集路径。
|
||||
|
||||
其中 `<out_dir> `为训练时所有数据的保存路径。
|
||||
|
||||
### 2.4 vocoder模型训练
|
||||
vocoder模型对生成效果影响不大,已预置3款。
|
||||
#### 2.4.1 数据预处理
|
||||
```shell
|
||||
python vocoder_preprocess.py <datasets_root> \
|
||||
-m <synthesizer_model_path>
|
||||
```
|
||||
|
||||
其中`<datasets_root>`为你数据集路径。
|
||||
|
||||
其中 `<synthesizer_model_path>`为synthesizer模型地址。
|
||||
|
||||
#### 2.4.2 wavernn声码器训练:
|
||||
```
|
||||
python vocoder_train.py <name> <datasets_root>
|
||||
```
|
||||
#### 2.4.3 hifigan声码器训练:
|
||||
```
|
||||
python vocoder_train.py <name> <datasets_root> hifigan
|
||||
```
|
||||
#### 2.4.4 fregan声码器训练:
|
||||
```
|
||||
python vocoder_train.py <name> <datasets_root> \
|
||||
--config config.json fregan
|
||||
```
|
||||
将GAN声码器的训练切换为多GPU模式:修改`GAN`文件夹下`.json`文件中的`num_gpus`参数。
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## 3.致谢
|
||||
### 3.1 项目致谢
|
||||
该库一开始从仅支持英语的[Real-Time-Voice-Cloning](https://github.com/CorentinJ/Real-Time-Voice-Cloning) 分叉出来的,鸣谢作者。
|
||||
### 3.2 论文致谢
|
||||
| URL | Designation | 标题 | 实现源码 |
|
||||
| --- | ----------- | ----- | --------------------- |
|
||||
| [1803.09017](https://arxiv.org/abs/1803.09017) | GlobalStyleToken (synthesizer)| Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis | 本代码库 |
|
||||
| [2010.05646](https://arxiv.org/abs/2010.05646) | HiFi-GAN (vocoder)| Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | 本代码库 |
|
||||
| [2106.02297](https://arxiv.org/abs/2106.02297) | Fre-GAN (vocoder)| Fre-GAN: Adversarial Frequency-consistent Audio Synthesis | 本代码库 |
|
||||
|[**1806.04558**](https://arxiv.org/pdf/1806.04558.pdf) | SV2TTS | Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis | 本代码库 |
|
||||
|[1802.08435](https://arxiv.org/pdf/1802.08435.pdf) | WaveRNN (vocoder) | Efficient Neural Audio Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) |
|
||||
|[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN)
|
||||
|[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 |
|
||||
|
||||
### 3.3 开发者致谢
|
||||
|
||||
作为AI领域的从业者,我们不仅乐于开发一些具有里程碑意义的算法项目,同时也乐于分享项目以及开发过程中收获的喜悦。
|
||||
|
||||
因此,你们的使用是对我们项目的最大认可。同时当你们在项目使用中遇到一些问题时,欢迎你们随时在issue上留言。你们的指正这对于项目的后续优化具有十分重大的的意义。
|
||||
|
||||
为了表示感谢,我们将在本项目中留下各位开发者信息以及相对应的贡献。
|
||||
|
||||
- ------------------------------------------------ 开 发 者 贡 献 内 容 ---------------------------------------------------------------------------------
|
||||
|
||||
@@ -1,9 +1,11 @@
|
||||
> 🚧 While I no longer actively update this repo, you can find me continuously pushing this tech forward to good side and open-source. I'm also building an optimized and cloud hosted version: https://noiz.ai/ and it's free but not ready for commersial use now.
|
||||
>
|
||||

|
||||
|
||||
<a href="https://trendshift.io/repositories/3869" target="_blank"><img src="https://trendshift.io/api/badge/repositories/3869" alt="babysor%2FMockingBird | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
|
||||
|
||||
[](http://choosealicense.com/licenses/mit/)
|
||||
|
||||
> English | [中文](README-CN.md)
|
||||
> English | [中文](README-CN.md)| [中文Linux](README-LINUX-CN.md)
|
||||
|
||||
## Features
|
||||
🌍 **Chinese** supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc.
|
||||
@@ -29,6 +31,7 @@
|
||||
> If you get an `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2 )` This error is probably due to a low version of python, try using 3.9 and it will install successfully
|
||||
* Install [ffmpeg](https://ffmpeg.org/download.html#get-packages).
|
||||
* Run `pip install -r requirements.txt` to install the remaining necessary packages.
|
||||
> The recommended environment here is `Repo Tag 0.0.1` `Pytorch1.9.0 with Torchvision0.10.0 and cudatoolkit10.2` `requirements.txt` `webrtcvad-wheels` because `requirements. txt` was exported a few months ago, so it doesn't work with newer versions
|
||||
* Install webrtcvad `pip install webrtcvad-wheels`(If you need)
|
||||
|
||||
or
|
||||
@@ -126,7 +129,7 @@ Allowing parameter `--dataset {dataset}` to support aidatatang_200zh, magicdata,
|
||||
| --- | ----------- | ----- |----- |
|
||||
| @author | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [Baidu](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps trained by multiple datasets
|
||||
| @author | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [Baidu](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) code:om7f | | 25k steps trained by multiple datasets, only works under version 0.0.1
|
||||
|@FawenYo | https://yisiou-my.sharepoint.com/:u:/g/personal/lawrence_cheng_yisiou_onmicrosoft_com/EWFWDHzee-NNg9TWdKckCc4BC7bK2j9cCbOWn0-_tK0nOg?e=Cc4EFA https://u.teknik.io/AYxWf.pt | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps with local accent of Taiwan, only works under version 0.0.1
|
||||
|@FawenYo | https://yisiou-my.sharepoint.com/:u:/g/personal/lawrence_cheng_fawenyo_onmicrosoft_com/EWFWDHzee-NNg9TWdKckCc4BC7bK2j9cCbOWn0-_tK0nOg?e=n0gGgC | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps with local accent of Taiwan, only works under version 0.0.1
|
||||
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ code: 2021 https://www.aliyundrive.com/s/AwPsbo8mcSP code: z2m0 | https://www.bilibili.com/video/BV1uh411B7AD/ | only works under version 0.0.1
|
||||
|
||||
#### 2.4 Train vocoder (Optional)
|
||||
|
||||
@@ -39,6 +39,9 @@ data_info = {
|
||||
}
|
||||
}
|
||||
|
||||
def should_skip(fpath: Path, skip_existing: bool) -> bool:
|
||||
return skip_existing and fpath.exists()
|
||||
|
||||
def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
|
||||
skip_existing: bool, hparams, no_alignments: bool,
|
||||
dataset: str, emotion_extract = False, encoder_model_fpath=None):
|
||||
@@ -99,7 +102,7 @@ def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
|
||||
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
|
||||
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
|
||||
|
||||
def embed_utterance(fpaths, encoder_model_fpath):
|
||||
def _embed_utterance(fpaths: str, encoder_model_fpath: str):
|
||||
if not encoder.is_loaded():
|
||||
encoder.load_model(encoder_model_fpath)
|
||||
|
||||
@@ -110,15 +113,13 @@ def embed_utterance(fpaths, encoder_model_fpath):
|
||||
embed = encoder.embed_utterance(wav)
|
||||
np.save(embed_fpath, embed, allow_pickle=False)
|
||||
|
||||
def _emo_extract_from_utterance(fpaths, hparams, skip_existing=False):
|
||||
if skip_existing and fpaths.exists():
|
||||
return
|
||||
def _emo_extract_from_utterance(fpaths, hparams):
|
||||
wav_fpath, emo_fpath = fpaths
|
||||
wav = np.load(wav_fpath)
|
||||
emo = extract_emo(np.expand_dims(wav, 0), hparams.sample_rate, True)
|
||||
np.save(emo_fpath, emo.squeeze(0), allow_pickle=False)
|
||||
|
||||
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int):
|
||||
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int, skip_existing: bool):
|
||||
wav_dir = synthesizer_root.joinpath("audio")
|
||||
metadata_fpath = synthesizer_root.joinpath("train.txt")
|
||||
assert wav_dir.exists() and metadata_fpath.exists()
|
||||
@@ -128,11 +129,11 @@ def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_proce
|
||||
# Gather the input wave filepath and the target output embed filepath
|
||||
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
|
||||
metadata = [line.split("|") for line in metadata_file]
|
||||
fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata]
|
||||
|
||||
fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata if not should_skip(embed_dir.joinpath(m[2]), skip_existing)]
|
||||
|
||||
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
|
||||
# Embed the utterances in separate threads
|
||||
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
|
||||
func = partial(_embed_utterance, encoder_model_fpath=encoder_model_fpath)
|
||||
job = Pool(n_processes).imap(func, fpaths)
|
||||
tuple(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
|
||||
|
||||
@@ -142,14 +143,14 @@ def create_emo(synthesizer_root: Path, n_processes: int, skip_existing: bool, hp
|
||||
assert wav_dir.exists() and metadata_fpath.exists()
|
||||
emo_dir = synthesizer_root.joinpath("emo")
|
||||
emo_dir.mkdir(exist_ok=True)
|
||||
|
||||
|
||||
# Gather the input wave filepath and the target output embed filepath
|
||||
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
|
||||
metadata = [line.split("|") for line in metadata_file]
|
||||
fpaths = [(wav_dir.joinpath(m[0]), emo_dir.joinpath(m[0].replace("audio-", "emo-"))) for m in metadata]
|
||||
fpaths = [(wav_dir.joinpath(m[0]), emo_dir.joinpath(m[0].replace("audio-", "emo-"))) for m in metadata if not should_skip(emo_dir.joinpath(m[0].replace("audio-", "emo-")), skip_existing)]
|
||||
|
||||
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
|
||||
# Embed the utterances in separate threads
|
||||
func = partial(_emo_extract_from_utterance, hparams=hparams, skip_existing=skip_existing)
|
||||
func = partial(_emo_extract_from_utterance, hparams=hparams)
|
||||
job = Pool(n_processes).imap(func, fpaths)
|
||||
tuple(tqdm(job, "Emo", len(fpaths), unit="utterances"))
|
||||
|
||||
@@ -45,7 +45,7 @@ def extract_emo(
|
||||
return y
|
||||
|
||||
def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
|
||||
skip_existing: bool, hparams, encoder_model_fpath):
|
||||
mel_fpath: str, wav_fpath: str, hparams, encoder_model_fpath):
|
||||
## FOR REFERENCE:
|
||||
# For you not to lose your head if you ever wish to change things here or implement your own
|
||||
# synthesizer.
|
||||
@@ -58,13 +58,6 @@ def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
|
||||
# without extra padding. This means that you won't have an exact relation between the length
|
||||
# of the wav and of the mel spectrogram. See the vocoder data loader.
|
||||
|
||||
# Skip existing utterances if needed
|
||||
mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename)
|
||||
wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename)
|
||||
|
||||
if skip_existing and mel_fpath.exists() and wav_fpath.exists():
|
||||
return None
|
||||
|
||||
# Trim silence
|
||||
if hparams.trim_silence:
|
||||
if not encoder.is_loaded():
|
||||
@@ -112,50 +105,27 @@ def _split_on_silences(wav_fpath, words, hparams):
|
||||
def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams, dict_info, no_alignments: bool, encoder_model_fpath: Path):
|
||||
metadata = []
|
||||
extensions = ("*.wav", "*.flac", "*.mp3")
|
||||
if skip_existing:
|
||||
for extension in extensions:
|
||||
wav_fpath_list = speaker_dir.glob(extension)
|
||||
# Iterate over each wav
|
||||
for wav_fpath in wav_fpath_list:
|
||||
words = dict_info.get(wav_fpath.name.split(".")[0])
|
||||
for extension in extensions:
|
||||
wav_fpath_list = speaker_dir.glob(extension)
|
||||
# Iterate over each wav
|
||||
for wav_fpath in wav_fpath_list:
|
||||
words = dict_info.get(wav_fpath.name.split(".")[0])
|
||||
if not words:
|
||||
words = dict_info.get(wav_fpath.name) # try with extension
|
||||
if not words:
|
||||
words = dict_info.get(wav_fpath.name) # try with extension
|
||||
if not words:
|
||||
print("no wordS")
|
||||
continue
|
||||
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
|
||||
|
||||
mel_fpath = out_dir.joinpath("mels", f"mel-{sub_basename}.npy")
|
||||
wav_fpath_ = out_dir.joinpath("audio", f"audio-{sub_basename}.npy")
|
||||
|
||||
if mel_fpath.exists() and wav_fpath_.exists():
|
||||
print(f"No word found in dict_info for {wav_fpath.name}, skip it")
|
||||
continue
|
||||
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
|
||||
mel_fpath_out = out_dir.joinpath("mels", f"mel-{sub_basename}.npy")
|
||||
wav_fpath_out = out_dir.joinpath("audio", f"audio-{sub_basename}.npy")
|
||||
|
||||
if skip_existing and mel_fpath_out.exists() and wav_fpath_out.exists():
|
||||
continue
|
||||
wav, text = _split_on_silences(wav_fpath, words, hparams)
|
||||
result = _process_utterance(wav, text, out_dir, sub_basename, mel_fpath_out, wav_fpath_out, hparams, encoder_model_fpath)
|
||||
if result is None:
|
||||
continue
|
||||
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
|
||||
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
|
||||
|
||||
wav, text = _split_on_silences(wav_fpath, words, hparams)
|
||||
result = _process_utterance(wav, text, out_dir, sub_basename,
|
||||
False, hparams, encoder_model_fpath) # accelarate
|
||||
if result is None:
|
||||
continue
|
||||
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
|
||||
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
|
||||
else:
|
||||
for extension in extensions:
|
||||
wav_fpath_list = speaker_dir.glob(extension)
|
||||
# Iterate over each wav
|
||||
for wav_fpath in wav_fpath_list:
|
||||
words = dict_info.get(wav_fpath.name.split(".")[0])
|
||||
if not words:
|
||||
words = dict_info.get(wav_fpath.name) # try with extension
|
||||
if not words:
|
||||
print("no wordS")
|
||||
continue
|
||||
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
|
||||
|
||||
wav, text = _split_on_silences(wav_fpath, words, hparams)
|
||||
result = _process_utterance(wav, text, out_dir, sub_basename,
|
||||
False, hparams, encoder_model_fpath)
|
||||
if result is None:
|
||||
continue
|
||||
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
|
||||
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
|
||||
return metadata
|
||||
|
||||
2
pre.py
2
pre.py
@@ -71,7 +71,7 @@ if __name__ == "__main__":
|
||||
del args.n_processes_embed
|
||||
preprocess_dataset(**vars(args))
|
||||
|
||||
create_embeddings(synthesizer_root=args.out_dir, n_processes=n_processes_embed, encoder_model_fpath=encoder_model_fpath)
|
||||
create_embeddings(synthesizer_root=args.out_dir, n_processes=n_processes_embed, encoder_model_fpath=encoder_model_fpath, skip_existing=args.skip_existing)
|
||||
|
||||
if args.emotion_extract:
|
||||
create_emo(synthesizer_root=args.out_dir, n_processes=n_processes_embed, skip_existing=args.skip_existing, hparams=args.hparams)
|
||||
|
||||
@@ -2,7 +2,8 @@ umap-learn
|
||||
visdom
|
||||
librosa
|
||||
matplotlib>=3.3.0
|
||||
numpy
|
||||
numpy==1.19.3; platform_system == "Windows"
|
||||
numpy==1.20.3; platform_system != "Windows"
|
||||
scipy>=1.0.0
|
||||
tqdm
|
||||
sounddevice
|
||||
@@ -12,8 +13,8 @@ inflect
|
||||
PyQt5
|
||||
multiprocess
|
||||
numba
|
||||
webrtcvad
|
||||
pypinyin
|
||||
webrtcvad; platform_system != "Windows"
|
||||
pypinyin==0.44.0
|
||||
flask
|
||||
flask_wtf
|
||||
flask_cors
|
||||
@@ -25,9 +26,9 @@ PyYAML
|
||||
torch_complex
|
||||
espnet
|
||||
PyWavelets
|
||||
monotonic-align==0.0.3
|
||||
transformers
|
||||
fastapi
|
||||
loguru
|
||||
typer[all]
|
||||
click
|
||||
click==8.0.4
|
||||
typer
|
||||
monotonic-align==1.0.0
|
||||
transformers
|
||||
|
||||
Reference in New Issue
Block a user