40 Commits

Author SHA1 Message Date
Vega
d889235518 Update README.md 2024-11-01 12:54:16 +08:00
Bob Conan
42789babd8 Update README.md, fix a typo (#1007) 2024-10-22 10:21:44 +08:00
Vega
2354bb42d1 Update README.md (#1005) 2024-10-16 22:48:15 +08:00
Vega
4358f6f353 Update README.md 2024-08-29 17:52:56 +08:00
xxxxx
5971555319 Update requirements.txt (#747)
Ubuntu 20.04.1 CUDA 11.3 缺少依赖,还有依赖冲突

Co-authored-by: Vega <babysor00@gmail.com>
2024-08-22 15:06:40 +08:00
Emma Thompson
6f84026c51 Env update 添加环境需求注释 (#660)
* Update Readme Doc

添加环境需求注释

* Update Readme Doc

Add environmental requirement notes

---------

Co-authored-by: Limingrui0 <65227354+Limingrui0@users.noreply.github.com>
2024-07-06 10:13:09 +08:00
Terminal
a30657ecf5 fix:preprocess_audio.py--The .npy file failed to save (#988) 2024-07-06 10:12:36 +08:00
Terminal
cc250af1f6 fix requirements monotonic-align error (#989) 2024-07-06 10:12:06 +08:00
Vega
156723e37c Skip embedding (#950)
* Skip embedding

* Skip earlier

* Remove unused paramater

* Pass param
2023-09-05 23:15:04 +08:00
Vega
1862d2145b Merge pull request #953 from babysor/babysor-patch-3
Update README.md
2023-08-31 11:42:15 +08:00
Vega
72a22d448b Update README.md 2023-08-31 11:42:05 +08:00
Vega
98d38d84c3 Merge pull request #952 from SeaTidesPro/main
add readme-linux-zh
2023-08-31 11:41:10 +08:00
Tide
7ab86c6f4c Update README-LINUX-CN.md 2023-08-30 14:41:45 +08:00
Tide
ab79881480 Update README-LINUX-CN.md 2023-08-30 14:40:30 +08:00
Tide
fd93b40398 Update README-LINUX-CN.md 2023-08-30 14:35:34 +08:00
Tide
dbf01347fc Update README-LINUX-CN.md 2023-08-30 14:35:12 +08:00
Tide
28f9173dfa Update README-LINUX-CN.md 2023-08-30 14:34:20 +08:00
Tide
d073e1f349 Update README-LINUX-CN.md 2023-08-30 14:24:05 +08:00
Tide
baa8b5005d Update README-LINUX-CN.md 2023-08-30 14:05:40 +08:00
Tide
d54f4fb631 Update README-LINUX-CN.md 2023-08-30 13:18:33 +08:00
Tide
7353888d35 Create README-LINUX-CN.md 2023-08-30 12:20:29 +08:00
Vega
e9ce943f6c Merge pull request #947 from FawenYo/doc/update_link
📝 Update model download link
2023-08-11 22:02:41 +08:00
FawenYo
77c145328c 📝 Update model download link 2023-08-11 14:31:39 +08:00
Vega
3bce6bbbe7 Merge pull request #945 from babysor/babysor-patch-1
Update README.md
2023-08-10 15:54:23 +08:00
Vega
9dd8ea11e5 Merge pull request #944 from babysor/babysor-patch-2
Update README-CN.md
2023-08-10 15:53:52 +08:00
Vega
5a0d77e699 Update README-CN.md 2023-08-10 15:53:42 +08:00
Vega
4914fc0776 Update README.md 2023-08-10 15:50:21 +08:00
Vega
8f95faa0d3 Merge pull request #914 from cloudxu/readme_update
Removing ongoing work session in README
2023-06-15 17:39:13 +08:00
Cloud Xu
facc97e236 removing ongoing work 2023-06-15 17:00:05 +08:00
Vega
3d1e3dc542 Merge pull request #892 from FawenYo/main
Update FawenYo's shared model
2023-06-10 10:25:04 +08:00
Vega
536ae8899c Merge pull request #908 from 0warning0error/main
Some changes to make it easier to install the dependencies
2023-06-10 10:24:39 +08:00
0warning0error
9f1dbeeecc Some changes to make it easier to install the dependencies 2023-06-03 00:07:36 +08:00
FawenYo
d3bdf816db Update FawenYo's shared model 2023-05-06 14:37:44 +08:00
Vega
b78d0d2a26 Merge pull request #782 from Nier-Y/main
Update README.md and README-CN.md
2023-03-07 16:41:48 +08:00
babysor00
5c17fc8bb0 add pretrained 2023-02-18 09:31:05 +08:00
babysor00
3ce874ab46 Fix issue for training and preprocessing 2023-02-10 20:34:01 +08:00
babysor00
beec0b93ed Fix issues 2023-02-04 17:00:49 +08:00
Vega
9d67b757f0 Merge pull request #822 from babysor/restruct-project
Restruct project
2023-02-04 14:37:48 +08:00
yan
d1ba355c5f Adding English version M1 Mac Setup 2022-11-18 00:36:42 +08:00
yan
83d95c6c81 新增M1 Mac的环境配置 2022-11-17 23:48:52 +08:00
31 changed files with 22427 additions and 396 deletions

8
.gitignore vendored
View File

@@ -14,11 +14,13 @@
*.bcf
*.toc
*.sh
data/ckpt
!data/ckpt/vocoder/pretrained/**
data/ckpt/*/*
!data/ckpt/encoder/pretrained.pt
!data/ckpt/vocoder/pretrained/
wavs
log
!/docker-entrypoint.sh
!/datasets_download/*.sh
/datasets
/datasets
monotonic_align/build
monotonic_align/monotonic_align

12
.vscode/launch.json vendored
View File

@@ -53,7 +53,7 @@
"request": "launch",
"program": "train.py",
"console": "integratedTerminal",
"args": ["--type", "synth", "..\\audiodata\\SV2TTS\\synthesizer"]
"args": ["--type", "vits"]
},
{
"name": "Python: PPG Convert",
@@ -64,6 +64,14 @@
"args": ["-c", ".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2.yaml",
"-m", ".\\ppg2mel\\saved_models\\best_loss_step_304000.pth", "--wav_dir", ".\\wavs\\input", "--ref_wav_path", ".\\wavs\\pkq.mp3", "-o", ".\\wavs\\output\\"
]
}
},
{
"name": "Python: Vits Train",
"type": "python",
"request": "launch",
"program": "train.py",
"console": "integratedTerminal",
"args": ["--type", "vits"]
},
]
}

View File

@@ -18,22 +18,10 @@
🌍 **Webserver Ready** 可伺服你的训练结果,供远程调用
### 进行中的工作
* GUI/客户端大升级与合并
- [x] 初始化框架 `./mkgui` 基于streamlit + fastapi和 [技术设计](https://vaj2fgg8yn.feishu.cn/docs/doccnvotLWylBub8VJIjKzoEaee)
- [x] 增加 Voice Cloning and Conversion的演示页面
- [x] 增加Voice Conversion的预处理preprocessing 和训练 training 页面
- [ ] 增加其他的的预处理preprocessing 和训练 training 页面
* 模型后端基于ESPnet2升级
## 开始
### 1. 安装要求
#### 1.1 通用配置
> 按照原始存储库测试您是否已准备好所有环境。
运行工具箱(demo_toolbox.py)需要 **Python 3.7 或更高版本**
@@ -41,8 +29,70 @@
> 如果在用 pip 方式安装的时候出现 `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2)` 这个错误可能是 python 版本过低3.9 可以安装成功
* 安装 [ffmpeg](https://ffmpeg.org/download.html#get-packages)。
* 运行`pip install -r requirements.txt` 来安装剩余的必要包。
> 这里的环境建议使用 `Repo Tag 0.0.1` `Pytorch1.9.0 with Torchvision0.10.0 and cudatoolkit10.2` `requirements.txt` `webrtcvad-wheels` 因为 `requiremants.txt` 是在几个月前导出的,所以不适配新版本
* 安装 webrtcvad `pip install webrtcvad-wheels`
或者
-`conda` 或者 `mamba` 安装依赖
```conda env create -n env_name -f env.yml```
```mamba env create -n env_name -f env.yml```
会创建新环境安装必须的依赖. 之后用 `conda activate env_name` 切换环境就完成了.
> env.yml只包含了运行时必要的依赖暂时不包括monotonic-align如果想要装GPU版本的pytorch可以查看官网教程。
#### 1.2 M1芯片Mac环境配置Inference Time)
> 以下环境按x86-64搭建使用原生的`demo_toolbox.py`可作为在不改代码情况下快速使用的workaround。
>
> 如需使用M1芯片训练因`demo_toolbox.py`依赖的`PyQt5`不支持M1则应按需修改代码或者尝试使用`web.py`。
* 安装`PyQt5`,参考[这个链接](https://stackoverflow.com/a/68038451/20455983)
* 用Rosetta打开Terminal参考[这个链接](https://dev.to/courier/tips-and-tricks-to-setup-your-apple-m1-for-development-547g)
* 用系统Python创建项目虚拟环境
```
/usr/bin/python3 -m venv /PathToMockingBird/venv
source /PathToMockingBird/venv/bin/activate
```
* 升级pip并安装`PyQt5`
```
pip install --upgrade pip
pip install pyqt5
```
* 安装`pyworld`和`ctc-segmentation`
> 这里两个文件直接`pip install`的时候找不到wheel尝试从c里build时找不到`Python.h`报错
* 安装`pyworld`
* `brew install python` 通过brew安装python时会自动安装`Python.h`
* `export CPLUS_INCLUDE_PATH=/opt/homebrew/Frameworks/Python.framework/Headers` 对于M1brew安装`Python.h`到上述路径。把路径添加到环境变量里
* `pip install pyworld`
* 安装`ctc-segmentation`
> 因上述方法没有成功,选择从[github](https://github.com/lumaku/ctc-segmentation) clone源码手动编译
* `git clone https://github.com/lumaku/ctc-segmentation.git` 克隆到任意位置
* `cd ctc-segmentation`
* `source /PathToMockingBird/venv/bin/activate` 假设一开始未开启打开MockingBird项目的虚拟环境
* `cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx`
* `/usr/bin/arch -x86_64 python setup.py build` 要注意明确用x86-64架构编译
* `/usr/bin/arch -x86_64 python setup.py install --optimize=1 --skip-build`用x86-64架构安装
* 安装其他依赖
* `/usr/bin/arch -x86_64 pip install torch torchvision torchaudio` 这里用pip安装`PyTorch`明确架构是x86
* `pip install ffmpeg` 安装ffmpeg
* `pip install -r requirements.txt`
* 运行
> 参考[这个链接](https://youtrack.jetbrains.com/issue/PY-46290/Allow-running-Python-under-Rosetta-2-in-PyCharm-for-Apple-Silicon)
让项目跑在x86架构环境上
* `vim /PathToMockingBird/venv/bin/pythonM1`
* 写入以下代码
```
#!/usr/bin/env zsh
mydir=${0:a:h}
/usr/bin/arch -x86_64 $mydir/python "$@"
```
* `chmod +x pythonM1` 设为可执行文件
* 如果使用PyCharm则把Interpreter指向`pythonM1`,否则也可命令行运行`/PathToMockingBird/venv/bin/pythonM1 demo_toolbox.py`
### 2. 准备预训练模型
考虑训练您自己专属的模型或者下载社区他人训练好的模型:
> 近期创建了[知乎专题](https://www.zhihu.com/column/c_1425605280340504576) 将不定期更新炼丹小技巧or心得也欢迎提问
@@ -64,7 +114,7 @@
> 假如你下载的 `aidatatang_200zh`文件放在D盘`train`文件路径为 `D:\data\aidatatang_200zh\corpus\train` , 你的`datasets_root`就是 `D:\data\`
* 训练合成器:
`python synthesizer_train.py mandarin <datasets_root>/SV2TTS/synthesizer`
`python ./control/cli/synthesizer_train.py mandarin <datasets_root>/SV2TTS/synthesizer`
* 当您在训练文件夹 *synthesizer/saved_models/* 中看到注意线显示和损失满足您的需要时,请转到`启动程序`一步。
@@ -75,7 +125,7 @@
| --- | ----------- | ----- | ----- |
| 作者 | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [百度盘链接](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps 用3个开源数据集混合训练
| 作者 | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [百度盘链接](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) 提取码om7f | | 25k steps 用3个开源数据集混合训练, 切换到tag v0.0.1使用
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|@FawenYo | https://yisiou-my.sharepoint.com/:u:/g/personal/lawrence_cheng_fawenyo_onmicrosoft_com/EWFWDHzee-NNg9TWdKckCc4BC7bK2j9cCbOWn0-_tK0nOg?e=n0gGgC | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 注意:根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 并切换到tag v0.0.1使用
#### 2.4训练声码器 (可选)
@@ -86,14 +136,14 @@
* 训练wavernn声码器:
`python vocoder_train.py <trainid> <datasets_root>`
`python ./control/cli/vocoder_train.py <trainid> <datasets_root>`
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
* 训练hifigan声码器:
`python vocoder_train.py <trainid> <datasets_root> hifigan`
`python ./control/cli/vocoder_train.py <trainid> <datasets_root> hifigan`
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
* 训练fregan声码器:
`python vocoder_train.py <trainid> <datasets_root> --config config.json fregan`
`python ./control/cli/vocoder_train.py <trainid> <datasets_root> --config config.json fregan`
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
* 将GAN声码器的训练切换为多GPU模式修改GAN文件夹下.json文件中的"num_gpus"参数
### 3. 启动程序或工具箱
@@ -114,7 +164,7 @@
想像柯南拿着变声器然后发出毛利小五郎的声音吗本项目现基于PPG-VC引入额外两个模块PPG extractor + PPG2Mel, 可以实现变声功能。(文档不全,尤其是训练部分,正在努力补充中)
#### 4.0 准备环境
* 确保项目以上环境已经安装ok运行`pip install espnet` 来安装剩余的必要包。
* 下载以下模型 链接https://pan.baidu.com/s/1bl_x_DHJSAUyN2fma-Q_Wg
* 下载以下模型 链接https://pan.baidu.com/s/1bl_x_DHJSAUyN2fma-Q_Wg
提取码gh41
* 24K采样率专用的vocoderhifigan*vocoder\saved_models\xxx*
* 预训练的ppg特征encoder(ppg_extractor)到 *ppg_extractor\saved_models\xxx*
@@ -124,14 +174,14 @@
* 下载aidatatang_200zh数据集并解压确保您可以访问 *train* 文件夹中的所有音频文件(如.wav
* 进行音频和梅尔频谱图预处理:
`python pre4ppg.py <datasets_root> -d {dataset} -n {number}`
`python ./control/cli/pre4ppg.py <datasets_root> -d {dataset} -n {number}`
可传入参数:
* `-d {dataset}` 指定数据集,支持 aidatatang_200zh, 不传默认为aidatatang_200zh
* `-n {number}` 指定并行数CPU 11700k在8的情况下需要运行12到18小时待优化
> 假如你下载的 `aidatatang_200zh`文件放在D盘`train`文件路径为 `D:\data\aidatatang_200zh\corpus\train` , 你的`datasets_root`就是 `D:\data\`
* 训练合成器, 注意在上一步先下载好`ppg2mel.yaml`, 修改里面的地址指向预训练好的文件夹:
`python ppg2mel_train.py --config .\ppg2mel\saved_models\ppg2mel.yaml --oneshotvc `
`python ./control/cli/ppg2mel_train.py --config .\ppg2mel\saved_models\ppg2mel.yaml --oneshotvc `
* 如果想要继续上一次的训练,可以通过`--load .\ppg2mel\saved_models\<old_pt_file>` 参数指定一个预训练模型文件。
#### 4.2 启动工具箱VC模式
@@ -232,4 +282,3 @@ voc_pad =2
![attention_step_20500_sample_1](https://user-images.githubusercontent.com/7423248/128587252-f669f05a-f411-4811-8784-222156ea5e9d.png)
![step-135500-mel-spectrogram_sample_1](https://user-images.githubusercontent.com/7423248/128587255-4945faa0-5517-46ea-b173-928eff999330.png)

223
README-LINUX-CN.md Normal file
View File

@@ -0,0 +1,223 @@
## 实时语音克隆 - 中文/普通话
![mockingbird](https://user-images.githubusercontent.com/12797292/131216767-6eb251d6-14fc-4951-8324-2722f0cd4c63.jpg)
[![MIT License](https://img.shields.io/badge/license-MIT-blue.svg?style=flat)](http://choosealicense.com/licenses/mit/)
### [English](README.md) | 中文
### [DEMO VIDEO](https://www.bilibili.com/video/BV17Q4y1B7mY/) | [Wiki教程](https://github.com/babysor/MockingBird/wiki/Quick-Start-(Newbie)) [训练教程](https://vaj2fgg8yn.feishu.cn/docs/doccn7kAbr3SJz0KM0SIDJ0Xnhd)
## 特性
🌍 **中文** 支持普通话并使用多种中文数据集进行测试aidatatang_200zh, magicdata, aishell3, biaobei, MozillaCommonVoice, data_aishell 等
🤩 **Easy & Awesome** 仅需下载或新训练合成器synthesizer就有良好效果复用预训练的编码器/声码器或实时的HiFi-GAN作为vocoder
🌍 **Webserver Ready** 可伺服你的训练结果,供远程调用。
🤩 **感谢各位小伙伴的支持,本项目将开启新一轮的更新**
## 1.快速开始
### 1.1 建议环境
- Ubuntu 18.04
- Cuda 11.7 && CuDNN 8.5.0
- Python 3.8 或 3.9
- Pytorch 2.0.1 <post cuda-11.7>
### 1.2 环境配置
```shell
# 下载前建议更换国内镜像源
conda create -n sound python=3.9
conda activate sound
git clone https://github.com/babysor/MockingBird.git
cd MockingBird
pip install -r requirements.txt
pip install webrtcvad-wheels
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
### 1.3 模型准备
> 当实在没有设备或者不想慢慢调试,可以使用社区贡献的模型(欢迎持续分享):
| 作者 | 下载链接 | 效果预览 | 信息 |
| --- | ----------- | ----- | ----- |
| 作者 | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [百度盘链接](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps 用3个开源数据集混合训练
| 作者 | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [百度盘链接](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) 提取码om7f | | 25k steps 用3个开源数据集混合训练, 切换到tag v0.0.1使用
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 注意:根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 并切换到tag v0.0.1使用
### 1.4 文件结构准备
文件结构准备如下所示算法将自动遍历synthesizer下的.pt模型文件。
```
# 以第一个 pretrained-11-7-21_75k.pt 为例
└── data
└── ckpt
└── synthesizer
└── pretrained-11-7-21_75k.pt
```
### 1.5 运行
```
python web.py
```
## 2.模型训练
### 2.1 数据准备
#### 2.1.1 数据下载
``` shell
# aidatatang_200zh
wget https://openslr.elda.org/resources/62/aidatatang_200zh.tgz
```
``` shell
# MAGICDATA
wget https://openslr.magicdatatech.com/resources/68/train_set.tar.gz
wget https://openslr.magicdatatech.com/resources/68/dev_set.tar.gz
wget https://openslr.magicdatatech.com/resources/68/test_set.tar.gz
```
``` shell
# AISHELL-3
wget https://openslr.elda.org/resources/93/data_aishell3.tgz
```
```shell
# Aishell
wget https://openslr.elda.org/resources/33/data_aishell.tgz
```
#### 2.1.2 数据批量解压
```shell
# 该指令为解压当前目录下的所有压缩文件
for gz in *.gz; do tar -zxvf $gz; done
```
### 2.2 encoder模型训练
#### 2.2.1 数据预处理:
需要先在`pre.py `头部加入:
```python
import torch
torch.multiprocessing.set_start_method('spawn', force=True)
```
使用以下指令对数据预处理:
```shell
python pre.py <datasets_root> \
-d <datasets_name>
```
其中`<datasets_root>`为原数据集路径,`<datasets_name>` 为数据集名称。
支持 `librispeech_other``voxceleb1``aidatatang_200zh`,使用逗号分割处理多数据集。
### 2.2.2 encoder模型训练
超参数文件路径:`models/encoder/hparams.py`
```shell
python encoder_train.py <name> \
<datasets_root>/SV2TTS/encoder
```
其中 `<name>` 是训练产生文件的名称,可自行修改。
其中 `<datasets_root>` 是经过 `Step 2.1.1` 处理过后的数据集路径。
#### 2.2.3 开启encoder模型训练数据可视化可选
```shell
visdom
```
### 2.3 synthesizer模型训练
#### 2.3.1 数据预处理:
```shell
python pre.py <datasets_root> \
-d <datasets_name> \
-o <datasets_path> \
-n <number>
```
`<datasets_root>` 为原数据集路径,当你的`aidatatang_200zh`路径为`/data/aidatatang_200zh/corpus/train`时,`<datasets_root>` 为 `/data/`。
`<datasets_name>` 为数据集名称。
`<datasets_path>` 为数据集处理后的保存路径。
`<number>` 为数据集处理时进程数根据CPU情况调整大小。
#### 2.3.2 新增数据预处理:
```shell
python pre.py <datasets_root> \
-d <datasets_name> \
-o <datasets_path> \
-n <number> \
-s
```
当新增数据集时,应加 `-s` 选择数据拼接,不加则为覆盖。
#### 2.3.3 synthesizer模型训练
超参数文件路径:`models/synthesizer/hparams.py`,需将`MockingBird/control/cli/synthesizer_train.py`移成`MockingBird/synthesizer_train.py`结构。
```shell
python synthesizer_train.py <name> <datasets_path> \
-m <out_dir>
```
其中 `<name>` 是训练产生文件的名称,可自行修改。
其中 `<datasets_path>` 是经过 `Step 2.2.1` 处理过后的数据集路径。
其中 `<out_dir> `为训练时所有数据的保存路径。
### 2.4 vocoder模型训练
vocoder模型对生成效果影响不大已预置3款。
#### 2.4.1 数据预处理
```shell
python vocoder_preprocess.py <datasets_root> \
-m <synthesizer_model_path>
```
其中`<datasets_root>`为你数据集路径。
其中 `<synthesizer_model_path>`为synthesizer模型地址。
#### 2.4.2 wavernn声码器训练:
```
python vocoder_train.py <name> <datasets_root>
```
#### 2.4.3 hifigan声码器训练:
```
python vocoder_train.py <name> <datasets_root> hifigan
```
#### 2.4.4 fregan声码器训练:
```
python vocoder_train.py <name> <datasets_root> \
--config config.json fregan
```
将GAN声码器的训练切换为多GPU模式修改`GAN`文件夹下`.json`文件中的`num_gpus`参数。
## 3.致谢
### 3.1 项目致谢
该库一开始从仅支持英语的[Real-Time-Voice-Cloning](https://github.com/CorentinJ/Real-Time-Voice-Cloning) 分叉出来的,鸣谢作者。
### 3.2 论文致谢
| URL | Designation | 标题 | 实现源码 |
| --- | ----------- | ----- | --------------------- |
| [1803.09017](https://arxiv.org/abs/1803.09017) | GlobalStyleToken (synthesizer)| Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis | 本代码库 |
| [2010.05646](https://arxiv.org/abs/2010.05646) | HiFi-GAN (vocoder)| Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | 本代码库 |
| [2106.02297](https://arxiv.org/abs/2106.02297) | Fre-GAN (vocoder)| Fre-GAN: Adversarial Frequency-consistent Audio Synthesis | 本代码库 |
|[**1806.04558**](https://arxiv.org/pdf/1806.04558.pdf) | SV2TTS | Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis | 本代码库 |
|[1802.08435](https://arxiv.org/pdf/1802.08435.pdf) | WaveRNN (vocoder) | Efficient Neural Audio Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) |
|[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN)
|[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 |
### 3.3 开发者致谢
作为AI领域的从业者我们不仅乐于开发一些具有里程碑意义的算法项目同时也乐于分享项目以及开发过程中收获的喜悦。
因此你们的使用是对我们项目的最大认可。同时当你们在项目使用中遇到一些问题时欢迎你们随时在issue上留言。你们的指正这对于项目的后续优化具有十分重大的的意义。
为了表示感谢,我们将在本项目中留下各位开发者信息以及相对应的贡献。
- ------------------------------------------------ 开 发 者 贡 献 内 容 ---------------------------------------------------------------------------------

View File

@@ -1,9 +1,11 @@
> 🚧 While I no longer actively update this repo, you can find me continuously pushing this tech forward to good side and open-source. Join me at [MaskGCT](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct). I'm also building an optimized and cloud hosted version: https://noiz.ai/
>
![mockingbird](https://user-images.githubusercontent.com/12797292/131216767-6eb251d6-14fc-4951-8324-2722f0cd4c63.jpg)
[![MIT License](https://img.shields.io/badge/license-MIT-blue.svg?style=flat)](http://choosealicense.com/licenses/mit/)
> English | [中文](README-CN.md)
> English | [中文](README-CN.md)| [中文Linux](README-LINUX-CN.md)
## Features
🌍 **Chinese** supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc.
@@ -18,17 +20,10 @@
### [DEMO VIDEO](https://www.bilibili.com/video/BV17Q4y1B7mY/)
### Ongoing Works(Helps Needed)
* Major upgrade on GUI/Client and unifying web and toolbox
[X] Init framework `./mkgui` and [tech design](https://vaj2fgg8yn.feishu.cn/docs/doccnvotLWylBub8VJIjKzoEaee)
[X] Add demo part of Voice Cloning and Conversion
[X] Add preprocessing and training for Voice Conversion
[ ] Add preprocessing and training for Encoder/Synthesizer/Vocoder
* Major upgrade on model backend based on ESPnet2(not yet started)
## Quick Start
### 1. Install Requirements
#### 1.1 General Setup
> Follow the original repo to test if you got all environment ready.
**Python 3.7 or higher ** is needed to run the toolbox.
@@ -36,9 +31,76 @@
> If you get an `ERROR: Could not find a version that satisfies the requirement torch==1.9.0+cu102 (from versions: 0.1.2, 0.1.2.post1, 0.1.2.post2 )` This error is probably due to a low version of python, try using 3.9 and it will install successfully
* Install [ffmpeg](https://ffmpeg.org/download.html#get-packages).
* Run `pip install -r requirements.txt` to install the remaining necessary packages.
> The recommended environment here is `Repo Tag 0.0.1` `Pytorch1.9.0 with Torchvision0.10.0 and cudatoolkit10.2` `requirements.txt` `webrtcvad-wheels` because `requirements. txt` was exported a few months ago, so it doesn't work with newer versions
* Install webrtcvad `pip install webrtcvad-wheels`(If you need)
> Note that we are using the pretrained encoder/vocoder but synthesizer since the original model is incompatible with the Chinese symbols. It means the demo_cli is not working at this moment.
or
- install dependencies with `conda` or `mamba`
```conda env create -n env_name -f env.yml```
```mamba env create -n env_name -f env.yml```
will create a virtual environment where necessary dependencies are installed. Switch to the new environment by `conda activate env_name` and enjoy it.
> env.yml only includes the necessary dependencies to run the projecttemporarily without monotonic-align. You can check the official website to install the GPU version of pytorch.
#### 1.2 Setup with a M1 Mac
> The following steps are a workaround to directly use the original `demo_toolbox.py`without the changing of codes.
>
> Since the major issue comes with the PyQt5 packages used in `demo_toolbox.py` not compatible with M1 chips, were one to attempt on training models with the M1 chip, either that person can forgo `demo_toolbox.py`, or one can try the `web.py` in the project.
##### 1.2.1 Install `PyQt5`, with [ref](https://stackoverflow.com/a/68038451/20455983) here.
* Create and open a Rosetta Terminal, with [ref](https://dev.to/courier/tips-and-tricks-to-setup-your-apple-m1-for-development-547g) here.
* Use system Python to create a virtual environment for the project
```
/usr/bin/python3 -m venv /PathToMockingBird/venv
source /PathToMockingBird/venv/bin/activate
```
* Upgrade pip and install `PyQt5`
```
pip install --upgrade pip
pip install pyqt5
```
##### 1.2.2 Install `pyworld` and `ctc-segmentation`
> Both packages seem to be unique to this project and are not seen in the original [Real-Time Voice Cloning](https://github.com/CorentinJ/Real-Time-Voice-Cloning) project. When installing with `pip install`, both packages lack wheels so the program tries to directly compile from c code and could not find `Python.h`.
* Install `pyworld`
* `brew install python` `Python.h` can come with Python installed by brew
* `export CPLUS_INCLUDE_PATH=/opt/homebrew/Frameworks/Python.framework/Headers` The filepath of brew-installed `Python.h` is unique to M1 MacOS and listed above. One needs to manually add the path to the environment variables.
* `pip install pyworld` that should do.
* Install`ctc-segmentation`
> Same method does not apply to `ctc-segmentation`, and one needs to compile it from the source code on [github](https://github.com/lumaku/ctc-segmentation).
* `git clone https://github.com/lumaku/ctc-segmentation.git`
* `cd ctc-segmentation`
* `source /PathToMockingBird/venv/bin/activate` If the virtual environment hasn't been deployed, activate it.
* `cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx`
* `/usr/bin/arch -x86_64 python setup.py build` Build with x86 architecture.
* `/usr/bin/arch -x86_64 python setup.py install --optimize=1 --skip-build`Install with x86 architecture.
##### 1.2.3 Other dependencies
* `/usr/bin/arch -x86_64 pip install torch torchvision torchaudio` Pip installing `PyTorch` as an example, articulate that it's installed with x86 architecture
* `pip install ffmpeg` Install ffmpeg
* `pip install -r requirements.txt` Install other requirements.
##### 1.2.4 Run the Inference Time (with Toolbox)
> To run the project on x86 architecture. [ref](https://youtrack.jetbrains.com/issue/PY-46290/Allow-running-Python-under-Rosetta-2-in-PyCharm-for-Apple-Silicon).
* `vim /PathToMockingBird/venv/bin/pythonM1` Create an executable file `pythonM1` to condition python interpreter at `/PathToMockingBird/venv/bin`.
* Write in the following content:
```
#!/usr/bin/env zsh
mydir=${0:a:h}
/usr/bin/arch -x86_64 $mydir/python "$@"
```
* `chmod +x pythonM1` Set the file as executable.
* If using PyCharm IDE, configure project interpreter to `pythonM1`([steps here](https://www.jetbrains.com/help/pycharm/configuring-python-interpreter.html#add-existing-interpreter)), if using command line python, run `/PathToMockingBird/venv/bin/pythonM1 demo_toolbox.py`
### 2. Prepare your models
> Note that we are using the pretrained encoder/vocoder but not synthesizer, since the original model is incompatible with the Chinese symbols. It means the demo_cli is not working at this moment, so additional synthesizer models are required.
You can either train your models or use existing ones:
#### 2.1 Train encoder with your dataset (Optional)
@@ -56,7 +118,7 @@ You can either train your models or use existing ones:
Allowing parameter `--dataset {dataset}` to support aidatatang_200zh, magicdata, aishell3, data_aishell, etc.If this parameter is not passed, the default dataset will be aidatatang_200zh.
* Train the synthesizer:
`python synthesizer_train.py mandarin <datasets_root>/SV2TTS/synthesizer`
`python train.py --type=synth mandarin <datasets_root>/SV2TTS/synthesizer`
* Go to next step when you see attention line show and loss meet your need in training folder *synthesizer/saved_models/*.
@@ -67,7 +129,7 @@ Allowing parameter `--dataset {dataset}` to support aidatatang_200zh, magicdata,
| --- | ----------- | ----- |----- |
| @author | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [Baidu](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps trained by multiple datasets
| @author | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [Baidu](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) codeom7f | | 25k steps trained by multiple datasets, only works under version 0.0.1
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing https://u.teknik.io/AYxWf.pt | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps with local accent of Taiwan, only works under version 0.0.1
|@FawenYo | https://yisiou-my.sharepoint.com/:u:/g/personal/lawrence_cheng_fawenyo_onmicrosoft_com/EWFWDHzee-NNg9TWdKckCc4BC7bK2j9cCbOWn0-_tK0nOg?e=n0gGgC | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps with local accent of Taiwan, only works under version 0.0.1
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ code: 2021 https://www.aliyundrive.com/s/AwPsbo8mcSP code: z2m0 | https://www.bilibili.com/video/BV1uh411B7AD/ | only works under version 0.0.1
#### 2.4 Train vocoder (Optional)

View File

@@ -78,7 +78,7 @@ if __name__ == "__main__":
else:
train_hifigan(0, args, h)
elif args.vocoder_type == "fregan":
with open('vocoder/fregan/config.json') as f:
with Path('vocoder/fregan/config.json').open() as f:
json_config = json.load(f)
h = AttrDict(json_config)
if h.num_gpus > 1:

View File

@@ -33,7 +33,7 @@ colormap = np.array([
[0, 0, 0],
[183, 183, 183],
[76, 255, 0],
], dtype=np.float) / 255
], dtype=float) / 255
default_text = \
"欢迎使用工具箱, 现已支持中文输入!"
@@ -402,8 +402,8 @@ class UI(QDialog):
self.app.processEvents()
def set_loading(self, value, maximum=1):
self.loading_bar.setValue(value * 100)
self.loading_bar.setMaximum(maximum * 100)
self.loading_bar.setValue(int(value * 100))
self.loading_bar.setMaximum(int(maximum * 100))
self.loading_bar.setTextVisible(value != 0)
self.app.processEvents()

Binary file not shown.

View File

@@ -0,0 +1,31 @@
{
"resblock": "1",
"num_gpus": 0,
"batch_size": 16,
"learning_rate": 0.0002,
"adam_b1": 0.8,
"adam_b2": 0.99,
"lr_decay": 0.999,
"seed": 1234,
"upsample_rates": [5,5,4,2],
"upsample_kernel_sizes": [10,10,8,4],
"upsample_initial_channel": 512,
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"segment_size": 6400,
"num_mels": 80,
"num_freq": 1025,
"n_fft": 1024,
"hop_size": 200,
"win_size": 800,
"sampling_rate": 16000,
"fmin": 0,
"fmax": 7600,
"fmax_for_loss": null,
"num_workers": 4
}

Binary file not shown.

Binary file not shown.

BIN
env.yml Normal file

Binary file not shown.

View File

@@ -39,7 +39,7 @@ def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray],
# Resample the wav if needed
if source_sr is not None and source_sr != sampling_rate:
wav = librosa.resample(wav, source_sr, sampling_rate)
wav = librosa.resample(wav, orig_sr = source_sr, target_sr = sampling_rate)
# Apply the preprocessing: normalize volume and shorten long silences
if normalize:
@@ -99,7 +99,7 @@ def trim_long_silences(wav):
return ret[width - 1:] / width
audio_mask = moving_average(voice_flags, vad_moving_average_width)
audio_mask = np.round(audio_mask).astype(np.bool)
audio_mask = np.round(audio_mask).astype(bool)
# Dilate the voiced regions
audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))

View File

@@ -21,7 +21,7 @@ colormap = np.array([
[33, 0, 127],
[0, 0, 0],
[183, 183, 183],
], dtype=np.float) / 255
], dtype=float) / 255
class Visualizations:

View File

@@ -31,14 +31,13 @@ class LogMel(torch.nn.Module):
fs: int = 16000,
n_fft: int = 512,
n_mels: int = 80,
fmin: float = None,
fmin: float = 0,
fmax: float = None,
htk: bool = False,
norm=1,
):
super().__init__()
fmin = 0 if fmin is None else fmin
fmax = fs / 2 if fmax is None else fmax
_mel_options = dict(
sr=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, htk=htk, norm=norm

View File

@@ -107,7 +107,7 @@ def _griffin_lim(S, hparams):
Based on https://github.com/librosa/librosa/issues/434
"""
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
S_complex = np.abs(S).astype(complex)
y = _istft(S_complex * angles, hparams)
for i in range(hparams.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y, hparams)))

View File

@@ -3,10 +3,10 @@ from utils.hparams import HParams
hparams = HParams(
### Signal Processing (used in both synthesizer and vocoder)
sample_rate = 16000,
n_fft = 800,
n_fft = 1024, # filter_length
num_mels = 80,
hop_size = 200, # Tacotron uses 12.5 ms frame shift (set to sample_rate * 0.0125)
win_size = 800, # Tacotron uses 50 ms frame length (set to sample_rate * 0.050)
hop_size = 256, # Tacotron uses 12.5 ms frame shift (set to sample_rate * 0.0125)
win_size = 1024, # Tacotron uses 50 ms frame length (set to sample_rate * 0.050)
fmin = 55,
min_level_db = -100,
ref_level_db = 20,
@@ -67,7 +67,7 @@ hparams = HParams(
use_lws = False, # "Fast spectrogram phase recovery using local weighted sums"
symmetric_mels = True, # Sets mel range to [-max_abs_value, max_abs_value] if True,
# and [0, max_abs_value] if False
trim_silence = True, # Use with sample_rate of 16000 for best results
trim_silence = False, # Use with sample_rate of 16000 for best results
### SV2TTS
speaker_embedding_size = 256, # Dimension for the speaker embedding

View File

@@ -2,12 +2,12 @@ import math
import torch
from torch import nn
from torch.nn import functional as F
from loguru import logger
from .sublayer.vits_modules import *
import monotonic_align
from .base import Base
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from utils.util import init_weights, get_padding, sequence_mask, rand_slice_segments, generate_path
@@ -386,7 +386,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class Vits(Base):
class Vits(nn.Module):
"""
Synthesizer of Vits
"""
@@ -408,13 +408,12 @@ class Vits(Base):
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
stop_threshold,
n_speakers=0,
gin_channels=0,
use_sdp=True,
**kwargs):
super().__init__(stop_threshold)
super().__init__()
self.n_vocab = n_vocab
self.spec_channels = spec_channels
self.inter_channels = inter_channels
@@ -457,7 +456,7 @@ class Vits(Base):
self.emb_g = nn.Embedding(n_speakers, gin_channels)
def forward(self, x, x_lengths, y, y_lengths, sid=None, emo=None):
# logger.info(f'====> Forward: 1.1.0')
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emo)
if self.n_speakers > 0:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
@@ -466,7 +465,7 @@ class Vits(Base):
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
# logger.info(f'====> Forward: 1.1.1')
with torch.no_grad():
# negative cross-entropy
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
@@ -475,10 +474,11 @@ class Vits(Base):
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
#logger.info(f'====> Forward: 1.1.1.1')
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
# logger.info(f'====> Forward: 1.1.2')
w = attn.sum(2)
if self.use_sdp:
l_length = self.dp(x, x_mask, w, g=g)
@@ -487,7 +487,6 @@ class Vits(Base):
logw_ = torch.log(w + 1e-6) * x_mask
logw = self.dp(x, x_mask, g=g)
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
# expand prior
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
@@ -497,7 +496,9 @@ class Vits(Base):
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
def infer(self, x, x_lengths, sid=None, emo=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
# logger.info(f'====> Infer: 1.1.0')
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths,emo)
# logger.info(f'====> Infer: 1.1.1')
if self.n_speakers > 0:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
else:
@@ -514,11 +515,14 @@ class Vits(Base):
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = generate_path(w_ceil, attn_mask)
# logger.info(f'====> Infer: 1.1.2')
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=g, reverse=True)
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
# logger.info(f'====> Infer: 1.1.3')
return o, attn, y_mask, (z, z_p, m_p, logs_p)

View File

@@ -6,7 +6,7 @@ from pathlib import Path
from tqdm import tqdm
import numpy as np
from models.encoder import inference as encoder
from models.synthesizer.preprocess_audio import preprocess_general
from models.synthesizer.preprocess_audio import preprocess_general, extract_emo
from models.synthesizer.preprocess_transcript import preprocess_transcript_aishell3, preprocess_transcript_magicdata
data_info = {
@@ -39,9 +39,12 @@ data_info = {
}
}
def should_skip(fpath: Path, skip_existing: bool) -> bool:
return skip_existing and fpath.exists()
def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
skip_existing: bool, hparams, no_alignments: bool,
dataset: str, emotion_extract = False):
dataset: str, emotion_extract = False, encoder_model_fpath=None):
dataset_info = data_info[dataset]
# Gather the input directories
dataset_root = datasets_root.joinpath(dataset)
@@ -77,13 +80,13 @@ def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
speaker_dirs = list(chain.from_iterable(input_dir.glob("*") for input_dir in input_dirs))
func = partial(dataset_info["speak_func"], out_dir=out_dir, skip_existing=skip_existing,
hparams=hparams, dict_info=dict_info, no_alignments=no_alignments, emotion_extract=emotion_extract)
job = Pool(n_processes).imap(func, speaker_dirs)
hparams=hparams, dict_info=dict_info, no_alignments=no_alignments, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap_unordered(func, speaker_dirs)
for speaker_metadata in tqdm(job, dataset, len(speaker_dirs), unit="speakers"):
if speaker_metadata is not None:
for metadatum in speaker_metadata:
metadata_file.write("|".join(str(x) for x in metadatum) + "\n")
metadata_file.write("|".join(map(str,metadatum)) + "\n")
metadata_file.close()
# Verify the contents of the metadata file
@@ -99,7 +102,7 @@ def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
def embed_utterance(fpaths, encoder_model_fpath):
def _embed_utterance(fpaths: str, encoder_model_fpath: str):
if not encoder.is_loaded():
encoder.load_model(encoder_model_fpath)
@@ -110,8 +113,13 @@ def embed_utterance(fpaths, encoder_model_fpath):
embed = encoder.embed_utterance(wav)
np.save(embed_fpath, embed, allow_pickle=False)
def _emo_extract_from_utterance(fpaths, hparams):
wav_fpath, emo_fpath = fpaths
wav = np.load(wav_fpath)
emo = extract_emo(np.expand_dims(wav, 0), hparams.sample_rate, True)
np.save(emo_fpath, emo.squeeze(0), allow_pickle=False)
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int):
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int, skip_existing: bool):
wav_dir = synthesizer_root.joinpath("audio")
metadata_fpath = synthesizer_root.joinpath("train.txt")
assert wav_dir.exists() and metadata_fpath.exists()
@@ -121,10 +129,28 @@ def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_proce
# Gather the input wave filepath and the target output embed filepath
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata]
fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata if not should_skip(embed_dir.joinpath(m[2]), skip_existing)]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(_embed_utterance, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap(func, fpaths)
tuple(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
def create_emo(synthesizer_root: Path, n_processes: int, skip_existing: bool, hparams):
wav_dir = synthesizer_root.joinpath("audio")
metadata_fpath = synthesizer_root.joinpath("train.txt")
assert wav_dir.exists() and metadata_fpath.exists()
emo_dir = synthesizer_root.joinpath("emo")
emo_dir.mkdir(exist_ok=True)
# Gather the input wave filepath and the target output embed filepath
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(wav_dir.joinpath(m[0]), emo_dir.joinpath(m[0].replace("audio-", "emo-"))) for m in metadata if not should_skip(emo_dir.joinpath(m[0].replace("audio-", "emo-")), skip_existing)]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
func = partial(_emo_extract_from_utterance, hparams=hparams)
job = Pool(n_processes).imap(func, fpaths)
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
tuple(tqdm(job, "Emo", len(fpaths), unit="utterances"))

View File

@@ -13,15 +13,17 @@ import torch
from transformers import Wav2Vec2Processor
from .models.wav2emo import EmotionExtractorModel
SAMPLE_RATE = 16000
class PinyinConverter(NeutralToneWith5Mixin, DefaultConverter):
pass
pinyin = Pinyin(PinyinConverter()).pinyin
# load model from hub
device = 'cuda' if torch.cuda.is_available() else "cpu"
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionExtractorModel.from_pretrained(model_name).to(device)
embs = []
wavnames = []
def extract_emo(
x: np.ndarray,
@@ -42,16 +44,8 @@ def extract_emo(
return y
class PinyinConverter(NeutralToneWith5Mixin, DefaultConverter):
pass
pinyin = Pinyin(PinyinConverter()).pinyin
def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
skip_existing: bool, hparams, emotion_extract: bool):
mel_fpath: str, wav_fpath: str, hparams, encoder_model_fpath):
## FOR REFERENCE:
# For you not to lose your head if you ever wish to change things here or implement your own
# synthesizer.
@@ -64,16 +58,10 @@ def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
# without extra padding. This means that you won't have an exact relation between the length
# of the wav and of the mel spectrogram. See the vocoder data loader.
# Skip existing utterances if needed
mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename)
wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename)
emo_fpath = out_dir.joinpath("emo", "emo-%s.npy" % basename)
skip_emo_extract = not emotion_extract or (skip_existing and emo_fpath.exists())
if skip_existing and mel_fpath.exists() and wav_fpath.exists() and skip_emo_extract:
return None
# Trim silence
if hparams.trim_silence:
if not encoder.is_loaded():
encoder.load_model(encoder_model_fpath)
wav = encoder.preprocess_wav(wav, normalize=False, trim_silence=True)
# Skip utterances that are too short
@@ -91,18 +79,14 @@ def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
np.save(mel_fpath, mel_spectrogram.T, allow_pickle=False)
np.save(wav_fpath, wav, allow_pickle=False)
if not skip_emo_extract:
emo = extract_emo(np.expand_dims(wav, 0), hparams.sample_rate, True)
np.save(emo_fpath, emo, allow_pickle=False)
# Return a tuple describing this training example
return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, len(wav), mel_frames, text
return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, wav, mel_frames, text
def _split_on_silences(wav_fpath, words, hparams):
# Load the audio waveform
wav, _ = librosa.load(wav_fpath, sr= hparams.sample_rate)
wav = librosa.effects.trim(wav, top_db= 40, frame_length=2048, hop_length=512)[0]
wav = librosa.effects.trim(wav, top_db= 40, frame_length=2048, hop_length=1024)[0]
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# denoise, we may not need it here.
@@ -113,25 +97,35 @@ def _split_on_silences(wav_fpath, words, hparams):
wav = logmmse.denoise(wav, profile, eta=0)
resp = pinyin(words, style=Style.TONE3)
res = [v[0] for v in resp if v[0].strip()]
res = filter(lambda v : not v.isspace(),map(lambda v: v[0],resp))
res = " ".join(res)
return wav, res
def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams, dict_info, no_alignments: bool, emotion_extract: bool):
def preprocess_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams, dict_info, no_alignments: bool, encoder_model_fpath: Path):
metadata = []
extensions = ["*.wav", "*.flac", "*.mp3"]
extensions = ("*.wav", "*.flac", "*.mp3")
for extension in extensions:
wav_fpath_list = speaker_dir.glob(extension)
# Iterate over each wav
for wav_fpath in wav_fpath_list:
words = dict_info.get(wav_fpath.name.split(".")[0])
words = dict_info.get(wav_fpath.name) if not words else words # try with extension
if not words:
print("no wordS")
continue
words = dict_info.get(wav_fpath.name) # try with extension
if not words:
print(f"No word found in dict_info for {wav_fpath.name}, skip it")
continue
sub_basename = "%s_%02d" % (wav_fpath.name, 0)
mel_fpath_out = out_dir.joinpath("mels", f"mel-{sub_basename}.npy")
wav_fpath_out = out_dir.joinpath("audio", f"audio-{sub_basename}.npy")
if skip_existing and mel_fpath_out.exists() and wav_fpath_out.exists():
continue
wav, text = _split_on_silences(wav_fpath, words, hparams)
metadata.append(_process_utterance(wav, text, out_dir, sub_basename,
skip_existing, hparams, emotion_extract))
return [m for m in metadata if m is not None]
result = _process_utterance(wav, text, out_dir, sub_basename, mel_fpath_out, wav_fpath_out, hparams, encoder_model_fpath)
if result is None:
continue
wav_fpath_name, mel_fpath_name, embed_fpath_name, wav, mel_frames, text = result
metadata.append ((wav_fpath_name, mel_fpath_name, embed_fpath_name, len(wav), mel_frames, text))
return metadata

View File

@@ -39,7 +39,7 @@ def new_train():
parser.add_argument("--syn_dir", type=str, default="../audiodata/SV2TTS/synthesizer", help= \
"Path to the synthesizer directory that contains the ground truth mel spectrograms, "
"the wavs, the emos and the embeds.")
parser.add_argument("-m", "--model_dir", type=str, default="data/ckpt/synthesizer/vits", help=\
parser.add_argument("-m", "--model_dir", type=str, default="data/ckpt/synthesizer/vits2", help=\
"Path to the output directory that will contain the saved model weights and the logs.")
parser.add_argument('--ckptG', type=str, required=False,
help='original VITS G checkpoint path')
@@ -65,7 +65,7 @@ def new_train():
run(0, 1, hparams)
def load_checkpoint(checkpoint_path, model, optimizer=None, is_old=False):
def load_checkpoint(checkpoint_path, model, optimizer=None, is_old=False, epochs=10000):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
@@ -89,8 +89,12 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, is_old=False):
try:
new_state_dict[k] = saved_state_dict[k]
except:
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if k == 'step':
new_state_dict[k] = iteration * epochs
else:
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict, strict=False)
else:
@@ -173,13 +177,13 @@ def run(rank, n_gpus, hps):
print("加载原版VITS模型G记录点成功")
else:
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
optim_g)
optim_g, epochs=hps.train.epochs)
if ckptD is not None:
_, _, _, epoch_str = load_checkpoint(ckptG, net_g, optim_g, is_old=True)
print("加载原版VITS模型D记录点成功")
else:
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
optim_d)
optim_d, epochs=hps.train.epochs)
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
@@ -216,17 +220,17 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
net_g.train()
net_d.train()
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, emo) in enumerate(train_loader):
logger.info(f'====> Step: 1 {batch_idx}')
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
speakers = speakers.cuda(rank, non_blocking=True)
emo = emo.cuda(rank, non_blocking=True)
# logger.info(f'====> Step: 1 {batch_idx}')
x, x_lengths = x.cuda(rank), x_lengths.cuda(rank)
spec, spec_lengths = spec.cuda(rank), spec_lengths.cuda(rank)
y, y_lengths = y.cuda(rank), y_lengths.cuda(rank)
speakers = speakers.cuda(rank)
emo = emo.cuda(rank)
# logger.info(f'====> Step: 1.0 {batch_idx}')
with autocast(enabled=hps.train.fp16_run):
y_hat, l_length, attn, ids_slice, x_mask, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers, emo)
# logger.info(f'====> Step: 1.1 {batch_idx}')
mel = spec_to_mel(
spec,
hps.data.filter_length,
@@ -247,7 +251,7 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
)
y = slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# logger.info(f'====> Step: 1.3 {batch_idx}')
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
@@ -258,7 +262,6 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
scaler.unscale_(optim_d)
grad_norm_d = clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
logger.info(f'====> Step: 2 {batch_idx}')
with autocast(enabled=hps.train.fp16_run):
# Generator
@@ -277,7 +280,6 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
grad_norm_g = clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
# logger.info(f'====> Step: 3 {batch_idx}')
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
@@ -339,6 +341,8 @@ def evaluate(hps, generator, eval_loader, writer_eval):
emo = emo[:1]
break
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, emo, max_len=1000)
# y_hat, attn, mask, *_ = generator.infer(x, x_lengths, speakers, emo, max_len=1000) # for non DistributedDataParallel object
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel(

View File

@@ -1,10 +1,11 @@
import os
import random
import numpy as np
import torch.nn.functional as F
import torch
import torch.utils.data
from utils.audio_utils import spectrogram, load_wav
from utils.audio_utils import load_wav_to_torch, spectrogram
from utils.util import intersperse
from models.synthesizer.utils.text import text_to_sequence
@@ -51,19 +52,10 @@ class VitsDataset(torch.utils.data.Dataset):
lengths = []
# for audiopath, sid, text in self.audio_metadata:
sid = 0
spk_to_sid = {}
for wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text in self.audio_metadata:
for wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spkid in self.audio_metadata:
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
# TODO: for magic data only
speaker_name = wav_fpath.split("_")[1]
if speaker_name not in spk_to_sid:
sid += 1
spk_to_sid[speaker_name] = sid
audio_metadata_new.append([wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spk_to_sid[speaker_name]])
audio_metadata_new.append([wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spkid])
lengths.append(os.path.getsize(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}') // (2 * self.hop_length))
print("found sid:%d", sid)
self.audio_metadata = audio_metadata_new
self.lengths = lengths
@@ -71,42 +63,32 @@ class VitsDataset(torch.utils.data.Dataset):
# separate filename, speaker_id and text
wav_fpath, text, sid = audio_metadata[0], audio_metadata[5], audio_metadata[6]
text = self.get_text(text)
spec, wav = self.get_audio(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}')
sid = self.get_sid(sid)
emo = torch.FloatTensor(np.load(f'{self.datasets_root}{os.sep}emo{os.sep}{wav_fpath.replace("audio", "emo")}'))
return (text, spec, wav, sid, emo)
def get_audio(self, filename):
# audio, sampling_rate = load_wav(filename)
# Load preprocessed wav npy instead of reading from wav file
audio = torch.FloatTensor(np.load(filename))
audio_norm = audio.unsqueeze(0)
# if sampling_rate != self.sampling_rate:
# raise ValueError("{} {} SR doesn't match target {} SR".format(
# sampling_rate, self.sampling_rate))
# audio = torch.load(filename)
audio = torch.FloatTensor(np.load(filename).astype(np.float32))
audio = audio.unsqueeze(0)
# audio_norm = audio / self.max_wav_value
# audio_norm = audio_norm.unsqueeze(0)
# spec_filename = filename.replace(".wav", ".spec.pt")
# if os.path.exists(spec_filename):
# spec = torch.load(spec_filename)
# else:
# spec = spectrogram(audio, self.filter_length,
# self.sampling_rate, self.hop_length, self.win_length,
# center=False)
# spec = torch.squeeze(spec, 0)
# torch.save(spec, spec_filename)
spec = spectrogram(audio, self.filter_length, self.hop_length, self.win_length,
center=False)
spec_filename = filename.replace(".wav", ".spec")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram(audio_norm, self.filter_length,self.hop_length, self.win_length,
center=False)
torch.save(spec, spec_filename)
spec = torch.squeeze(spec, 0)
return spec, audio
return spec, audio_norm
def get_text(self, text):
if self.cleaned_text:
text_norm = text_to_sequence(text, self.text_cleaners)
if self.add_blank:
text_norm = intersperse(text_norm, 0)
text_norm = intersperse(text_norm, 0) # 在所有文本数值序列中的元素前后都补充一个0 - 不适用于中文
text_norm = torch.LongTensor(text_norm)
return text_norm
@@ -177,7 +159,7 @@ class VitsDatasetCollate():
emo[i, :] = row[4]
if self.return_ids:
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing, emo
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, emo

View File

@@ -50,7 +50,7 @@ def linear_to_mel(spectrogram):
def build_mel_basis():
return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, fmin=hp.fmin)
return librosa.filters.mel(sr = hp.sample_rate, n_fft = hp.n_fft, n_mels=hp.num_mels, fmin=hp.fmin)
def normalize(S):

View File

@@ -0,0 +1,19 @@
import numpy as np
import torch
from .monotonic_align.core import maximum_path_c
def maximum_path(neg_cent, mask):
""" Cython optimized version.
neg_cent: [b, t_t, t_s]
mask: [b, t_t, t_s]
"""
device = neg_cent.device
dtype = neg_cent.dtype
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
path = np.zeros(neg_cent.shape, dtype=np.int32)
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
return torch.from_numpy(path).to(device=device, dtype=dtype)

21446
monotonic_align/core.c Normal file

File diff suppressed because it is too large Load Diff

42
monotonic_align/core.pyx Normal file
View File

@@ -0,0 +1,42 @@
cimport cython
from cython.parallel import prange
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
cdef int x
cdef int y
cdef float v_prev
cdef float v_cur
cdef float tmp
cdef int index = t_x - 1
for y in range(t_y):
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = value[y-1, x]
if x == 0:
if y == 0:
v_prev = 0.
else:
v_prev = max_neg_val
else:
v_prev = value[y-1, x-1]
value[y, x] += max(v_prev, v_cur)
for y in range(t_y - 1, -1, -1):
path[y, index] = 1
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
index = index - 1
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
cdef int b = paths.shape[0]
cdef int i
for i in prange(b, nogil=True):
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])

9
monotonic_align/setup.py Normal file
View File

@@ -0,0 +1,9 @@
from distutils.core import setup
from Cython.Build import cythonize
import numpy
setup(
name = 'monotonic_align',
ext_modules = cythonize("core.pyx"),
include_dirs=[numpy.get_include()]
)

8
pre.py
View File

@@ -1,4 +1,4 @@
from models.synthesizer.preprocess import create_embeddings, preprocess_dataset
from models.synthesizer.preprocess import create_embeddings, preprocess_dataset, create_emo
from models.synthesizer.hparams import hparams
from pathlib import Path
import argparse
@@ -64,12 +64,14 @@ if __name__ == "__main__":
"noise removal and is recommended. Please install and try again. If installation fails, "
"use --no_trim to disable this error message.")
encoder_model_fpath = args.encoder_model_fpath
del args.no_trim, args.encoder_model_fpath
del args.no_trim
args.hparams = hparams.parse(args.hparams)
n_processes_embed = args.n_processes_embed
del args.n_processes_embed
preprocess_dataset(**vars(args))
create_embeddings(synthesizer_root=args.out_dir, n_processes=n_processes_embed, encoder_model_fpath=encoder_model_fpath)
create_embeddings(synthesizer_root=args.out_dir, n_processes=n_processes_embed, encoder_model_fpath=encoder_model_fpath, skip_existing=args.skip_existing)
if args.emotion_extract:
create_emo(synthesizer_root=args.out_dir, n_processes=n_processes_embed, skip_existing=args.skip_existing, hparams=args.hparams)

View File

@@ -1,9 +1,9 @@
umap-learn
visdom
librosa==0.8.1
librosa
matplotlib>=3.3.0
numpy==1.19.3; platform_system == "Windows"
numpy==1.19.4; platform_system != "Windows"
numpy==1.20.3; platform_system != "Windows"
scipy>=1.0.0
tqdm
sounddevice
@@ -14,21 +14,21 @@ PyQt5
multiprocess
numba
webrtcvad; platform_system != "Windows"
pypinyin
pypinyin==0.44.0
flask
flask_wtf
flask_cors==3.0.10
gevent==21.8.0
flask_cors
gevent
flask_restx
tensorboard==1.15
streamlit==1.8.0
PyYAML==5.4.1
tensorboard
streamlit
PyYAML
torch_complex
espnet
PyWavelets
monotonic-align==0.0.3
transformers==4.26.0
fastapi
loguru
typer[all]
click==8.0.4
typer
monotonic-align==1.0.0
transformers

View File

@@ -17,13 +17,12 @@ def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def spectrogram(y, n_fft, hop_size, win_size, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global hann_window
dtype_device = str(y.dtype) + '_' + str(y.device)
wnsize_dtype_device = str(win_size) + '_' + dtype_device
@@ -34,7 +33,7 @@ def spectrogram(y, n_fft, hop_size, win_size, center=False):
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
center=center, pad_mode='reflect', normalized=False, onesided=True)
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
@@ -68,20 +67,12 @@ def mel_spectrogram(
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
# global mel_basis, hann_window
# if fmax not in mel_basis:
# mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
# mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
# hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
global mel_basis, hann_window
dtype_device = str(y.dtype) + '_' + str(y.device)
fmax_dtype_device = str(fmax) + '_' + dtype_device
wnsize_dtype_device = str(win_size) + '_' + dtype_device
if fmax_dtype_device not in mel_basis:
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)

550
vits.ipynb vendored

File diff suppressed because one or more lines are too long