Files
barrier/lib/platform/CMSWindowsSecondaryScreen.cpp
crs 3fc40e1939 Now warping mouse to center of screen when leaving client screens.
Some users requested this.  Also, the hider window is mapped before
warping the mouse so the active window shouldn't change if the focus
policy is point-to-focus.  Showing the window first can also reduce
the likelihood of seeing the cursor briefly in its hidden position.
2003-05-03 13:50:06 +00:00

1276 lines
34 KiB
C++

/*
* synergy -- mouse and keyboard sharing utility
* Copyright (C) 2002 Chris Schoeneman
*
* This package is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* found in the file COPYING that should have accompanied this file.
*
* This package is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "CMSWindowsSecondaryScreen.h"
#include "CMSWindowsScreen.h"
#include "XScreen.h"
#include "CLock.h"
#include "CLog.h"
#include "CArchMiscWindows.h"
#include <cctype>
// these are only defined when WINVER >= 0x0500
#if !defined(SPI_GETMOUSESPEED)
#define SPI_GETMOUSESPEED 112
#endif
#if !defined(SPI_SETMOUSESPEED)
#define SPI_SETMOUSESPEED 113
#endif
//
// CMSWindowsSecondaryScreen
//
CMSWindowsSecondaryScreen::CMSWindowsSecondaryScreen(
IScreenReceiver* receiver) :
m_is95Family(CArchMiscWindows::isWindows95Family()),
m_window(NULL),
m_mask(0)
{
m_screen = new CMSWindowsScreen(receiver, this);
}
CMSWindowsSecondaryScreen::~CMSWindowsSecondaryScreen()
{
assert(m_window == NULL);
delete m_screen;
}
void
CMSWindowsSecondaryScreen::keyDown(KeyID key,
KeyModifierMask mask, KeyButton button)
{
Keystrokes keys;
UINT virtualKey;
CLock lock(&m_mutex);
m_screen->syncDesktop();
// get the sequence of keys to simulate key press and the final
// modifier state.
m_mask = mapKey(keys, virtualKey, key, mask, kPress);
if (keys.empty()) {
return;
}
// generate key events
doKeystrokes(keys, 1);
// note that key is now down
m_keys[virtualKey] |= 0x80;
m_fakeKeys[virtualKey] |= 0x80;
switch (virtualKey) {
case VK_LSHIFT:
case VK_RSHIFT:
m_keys[VK_SHIFT] |= 0x80;
m_fakeKeys[VK_SHIFT] |= 0x80;
break;
case VK_LCONTROL:
case VK_RCONTROL:
m_keys[VK_CONTROL] |= 0x80;
m_fakeKeys[VK_CONTROL] |= 0x80;
break;
case VK_LMENU:
case VK_RMENU:
m_keys[VK_MENU] |= 0x80;
m_fakeKeys[VK_MENU] |= 0x80;
break;
}
// note which server key generated this key
m_serverKeyMap[button] = virtualKey;
}
void
CMSWindowsSecondaryScreen::keyRepeat(KeyID key,
KeyModifierMask mask, SInt32 count, KeyButton button)
{
Keystrokes keys;
UINT virtualKey;
CLock lock(&m_mutex);
m_screen->syncDesktop();
// if we haven't seen this button go down then ignore it
ServerKeyMap::iterator index = m_serverKeyMap.find(button);
if (index == m_serverKeyMap.end()) {
return;
}
// get the sequence of keys to simulate key repeat and the final
// modifier state.
m_mask = mapKey(keys, virtualKey, key, mask, kRepeat);
if (keys.empty()) {
return;
}
// if we've seen this button (and we should have) then make sure
// we release the same key we pressed when we saw it.
if (index != m_serverKeyMap.end() && virtualKey != index->second) {
// replace key up with previous keycode but leave key down
// alone so it uses the new keycode and store that keycode
// in the server key map.
for (Keystrokes::iterator index2 = keys.begin();
index2 != keys.end(); ++index2) {
if (index2->m_virtualKey == index->second) {
index2->m_virtualKey = index->second;
break;
}
}
// note that old key is now up
m_keys[index->second] = false;
m_fakeKeys[index->second] = false;
// map server key to new key
index->second = virtualKey;
// note that new key is now down
m_keys[index->second] = true;
m_fakeKeys[index->second] = true;
}
// generate key events
doKeystrokes(keys, count);
}
void
CMSWindowsSecondaryScreen::keyUp(KeyID key,
KeyModifierMask mask, KeyButton button)
{
Keystrokes keys;
UINT virtualKey;
CLock lock(&m_mutex);
m_screen->syncDesktop();
// if we haven't seen this button go down then ignore it
ServerKeyMap::iterator index = m_serverKeyMap.find(button);
if (index == m_serverKeyMap.end()) {
return;
}
// get the sequence of keys to simulate key release and the final
// modifier state.
m_mask = mapKey(keys, virtualKey, key, mask, kRelease);
// if there are no keys to generate then we should at least generate
// a key release for the key we pressed.
if (keys.empty()) {
Keystroke keystroke;
virtualKey = index->second;
keystroke.m_virtualKey = virtualKey;
keystroke.m_press = false;
keystroke.m_repeat = false;
keys.push_back(keystroke);
}
// if we've seen this button (and we should have) then make sure
// we release the same key we pressed when we saw it.
if (index != m_serverKeyMap.end() && virtualKey != index->second) {
// replace key up with previous virtual key
for (Keystrokes::iterator index2 = keys.begin();
index2 != keys.end(); ++index2) {
if (index2->m_virtualKey == virtualKey) {
index2->m_virtualKey = index->second;
break;
}
}
// use old virtual key
virtualKey = index->second;
}
// generate key events
doKeystrokes(keys, 1);
// note that key is now up
m_keys[virtualKey] &= ~0x80;
m_fakeKeys[virtualKey] &= ~0x80;
switch (virtualKey) {
case VK_LSHIFT:
if ((m_keys[VK_RSHIFT] & 0x80) == 0) {
m_keys[VK_SHIFT] &= ~0x80;
m_fakeKeys[VK_SHIFT] &= ~0x80;
}
break;
case VK_RSHIFT:
if ((m_keys[VK_LSHIFT] & 0x80) == 0) {
m_keys[VK_SHIFT] &= ~0x80;
m_fakeKeys[VK_SHIFT] &= ~0x80;
}
break;
case VK_LCONTROL:
if ((m_keys[VK_RCONTROL] & 0x80) == 0) {
m_keys[VK_CONTROL] &= ~0x80;
m_fakeKeys[VK_CONTROL] &= ~0x80;
}
break;
case VK_RCONTROL:
if ((m_keys[VK_LCONTROL] & 0x80) == 0) {
m_keys[VK_CONTROL] &= ~0x80;
m_fakeKeys[VK_CONTROL] &= ~0x80;
}
break;
case VK_LMENU:
if ((m_keys[VK_RMENU] & 0x80) == 0) {
m_keys[VK_MENU] &= ~0x80;
m_fakeKeys[VK_MENU] &= ~0x80;
}
break;
case VK_RMENU:
if ((m_keys[VK_LMENU] & 0x80) == 0) {
m_keys[VK_MENU] &= ~0x80;
m_fakeKeys[VK_MENU] &= ~0x80;
}
break;
}
// remove server key from map
if (index != m_serverKeyMap.end()) {
m_serverKeyMap.erase(index);
}
}
void
CMSWindowsSecondaryScreen::mouseDown(ButtonID button)
{
CLock lock(&m_mutex);
m_screen->syncDesktop();
// map button id to button flag
DWORD flags = mapButton(button, true);
// send event
if (flags != 0) {
mouse_event(flags, 0, 0, 0, 0);
}
}
void
CMSWindowsSecondaryScreen::mouseUp(ButtonID button)
{
CLock lock(&m_mutex);
m_screen->syncDesktop();
// map button id to button flag
DWORD flags = mapButton(button, false);
// send event
if (flags != 0) {
mouse_event(flags, 0, 0, 0, 0);
}
}
void
CMSWindowsSecondaryScreen::mouseMove(SInt32 x, SInt32 y)
{
CLock lock(&m_mutex);
m_screen->syncDesktop();
warpCursor(x, y);
}
void
CMSWindowsSecondaryScreen::mouseWheel(SInt32 delta)
{
CLock lock(&m_mutex);
m_screen->syncDesktop();
mouse_event(MOUSEEVENTF_WHEEL, 0, 0, delta, 0);
}
void
CMSWindowsSecondaryScreen::resetOptions()
{
// no options
}
void
CMSWindowsSecondaryScreen::setOptions(const COptionsList& /*options*/)
{
// no options
}
IScreen*
CMSWindowsSecondaryScreen::getScreen() const
{
return m_screen;
}
void
CMSWindowsSecondaryScreen::onScreensaver(bool)
{
// ignore
}
bool
CMSWindowsSecondaryScreen::onPreDispatch(const CEvent*)
{
return false;
}
bool
CMSWindowsSecondaryScreen::onEvent(CEvent* event)
{
assert(event != NULL);
const MSG& msg = event->m_msg;
switch (msg.message) {
case WM_ACTIVATEAPP:
if (msg.wParam == FALSE) {
// some other app activated. hide the hider window.
ShowWindow(m_window, SW_HIDE);
}
break;
}
return false;
}
void
CMSWindowsSecondaryScreen::onOneShotTimerExpired(UInt32)
{
// ignore
}
SInt32
CMSWindowsSecondaryScreen::getJumpZoneSize() const
{
return 0;
}
void
CMSWindowsSecondaryScreen::postCreateWindow(HWND window)
{
m_window = window;
// update key state
updateKeys();
// hide cursor if this screen isn't active
if (!isActive()) {
SInt32 x, y;
getScreen()->getCursorCenter(x, y);
showWindow(x, y);
}
}
void
CMSWindowsSecondaryScreen::preDestroyWindow(HWND)
{
// do nothing
}
void
CMSWindowsSecondaryScreen::onPreMainLoop()
{
assert(m_window != NULL);
}
void
CMSWindowsSecondaryScreen::onPreOpen()
{
assert(m_window == NULL);
}
void
CMSWindowsSecondaryScreen::onPreEnter()
{
assert(m_window != NULL);
}
void
CMSWindowsSecondaryScreen::onPreLeave()
{
assert(m_window != NULL);
}
void
CMSWindowsSecondaryScreen::createWindow()
{
// open the desktop and the window
m_window = m_screen->openDesktop();
if (m_window == NULL) {
throw XScreenOpenFailure();
}
}
void
CMSWindowsSecondaryScreen::destroyWindow()
{
// release keys that are logically pressed
releaseKeys();
// close the desktop and the window
m_screen->closeDesktop();
m_window = NULL;
}
void
CMSWindowsSecondaryScreen::showWindow(SInt32 x, SInt32 y)
{
// move hider window under the given position
MoveWindow(m_window, x, y, 1, 1, FALSE);
// raise and show the hider window
ShowWindow(m_window, SW_SHOWNA);
// now warp the mouse
warpCursor(x, y);
}
void
CMSWindowsSecondaryScreen::hideWindow()
{
ShowWindow(m_window, SW_HIDE);
}
void
CMSWindowsSecondaryScreen::warpCursor(SInt32 x, SInt32 y)
{
// motion is simple (i.e. it's on the primary monitor) if there
// is only one monitor.
bool simple = !m_screen->isMultimon();
if (!simple) {
// also simple if motion is within the primary monitor
simple = (x >= 0 && x < GetSystemMetrics(SM_CXSCREEN) &&
y >= 0 && y < GetSystemMetrics(SM_CYSCREEN));
}
// move the mouse directly to target position if motion is simple
if (simple) {
// when using absolute positioning with mouse_event(),
// the normalized device coordinates range over only
// the primary screen.
SInt32 w = GetSystemMetrics(SM_CXSCREEN);
SInt32 h = GetSystemMetrics(SM_CYSCREEN);
mouse_event(MOUSEEVENTF_MOVE | MOUSEEVENTF_ABSOLUTE,
(DWORD)((65536.0 * x) / w),
(DWORD)((65536.0 * y) / h),
0, 0);
}
// windows 98 (and Me?) is broken. you cannot set the absolute
// position of the mouse except on the primary monitor but you
// can do relative moves onto any monitor. this is, in microsoft's
// words, "by design." apparently the designers of windows 2000
// we're a little less lazy and did it right.
//
// microsoft recommends in Q193003 to absolute position the cursor
// somewhere on the primary monitor then relative move to the
// desired location. this doesn't work for us because when the
// user drags a scrollbar, a window, etc. it causes the dragged
// item to jump back a forth between the position on the primary
// monitor and the desired position. while it always ends up in
// the right place, the effect is disconcerting.
//
// instead we'll get the cursor's current position and do just a
// relative move from there to the desired position. relative
// moves are subject to cursor acceleration which we don't want.
// so we disable acceleration, do the relative move, then restore
// acceleration. there's a slight chance we'll end up in the
// wrong place if the user moves the cursor using this system's
// mouse while simultaneously moving the mouse on the server
// system. that defeats the purpose of synergy so we'll assume
// that won't happen. even if it does, the next mouse move will
// correct the position.
else {
// save mouse speed & acceleration
int oldSpeed[4];
bool accelChanged =
SystemParametersInfo(SPI_GETMOUSE,0, oldSpeed, 0) &&
SystemParametersInfo(SPI_GETMOUSESPEED, 0, oldSpeed + 3, 0);
// use 1:1 motion
if (accelChanged) {
int newSpeed[4] = { 0, 0, 0, 1 };
accelChanged =
SystemParametersInfo(SPI_SETMOUSE, 0, newSpeed, 0) ||
SystemParametersInfo(SPI_SETMOUSESPEED, 0, newSpeed + 3, 0);
}
// get current mouse position
POINT pos;
GetCursorPos(&pos);
// move relative to mouse position
mouse_event(MOUSEEVENTF_MOVE, x - pos.x, y - pos.y, 0, 0);
// restore mouse speed & acceleration
if (accelChanged) {
SystemParametersInfo(SPI_SETMOUSE, 0, oldSpeed, 0);
SystemParametersInfo(SPI_SETMOUSESPEED, 0, oldSpeed + 3, 0);
}
}
}
void
CMSWindowsSecondaryScreen::updateKeys()
{
// clear key state
memset(m_keys, 0, sizeof(m_keys));
memset(m_fakeKeys, 0, sizeof(m_keys));
// we only care about the modifier key states
m_keys[VK_LSHIFT] = static_cast<BYTE>(GetKeyState(VK_LSHIFT));
m_keys[VK_RSHIFT] = static_cast<BYTE>(GetKeyState(VK_RSHIFT));
m_keys[VK_SHIFT] = static_cast<BYTE>(GetKeyState(VK_SHIFT));
m_keys[VK_LCONTROL] = static_cast<BYTE>(GetKeyState(VK_LCONTROL));
m_keys[VK_RCONTROL] = static_cast<BYTE>(GetKeyState(VK_RCONTROL));
m_keys[VK_CONTROL] = static_cast<BYTE>(GetKeyState(VK_CONTROL));
m_keys[VK_LMENU] = static_cast<BYTE>(GetKeyState(VK_LMENU));
m_keys[VK_RMENU] = static_cast<BYTE>(GetKeyState(VK_RMENU));
m_keys[VK_MENU] = static_cast<BYTE>(GetKeyState(VK_MENU));
m_keys[VK_LWIN] = static_cast<BYTE>(GetKeyState(VK_LWIN));
m_keys[VK_RWIN] = static_cast<BYTE>(GetKeyState(VK_RWIN));
m_keys[VK_APPS] = static_cast<BYTE>(GetKeyState(VK_APPS));
m_keys[VK_CAPITAL] = static_cast<BYTE>(GetKeyState(VK_CAPITAL));
m_keys[VK_NUMLOCK] = static_cast<BYTE>(GetKeyState(VK_NUMLOCK));
m_keys[VK_SCROLL] = static_cast<BYTE>(GetKeyState(VK_SCROLL));
// copy over lock states to m_fakeKeys
m_fakeKeys[VK_CAPITAL] = static_cast<BYTE>(m_keys[VK_CAPITAL] & 0x01);
m_fakeKeys[VK_NUMLOCK] = static_cast<BYTE>(m_keys[VK_NUMLOCK] & 0x01);
m_fakeKeys[VK_SCROLL] = static_cast<BYTE>(m_keys[VK_SCROLL] & 0x01);
// update active modifier mask
m_mask = 0;
if ((m_keys[VK_LSHIFT] & 0x80) != 0 || (m_keys[VK_RSHIFT] & 0x80) != 0) {
m_mask |= KeyModifierShift;
}
if ((m_keys[VK_LCONTROL] & 0x80) != 0 ||
(m_keys[VK_RCONTROL] & 0x80) != 0) {
m_mask |= KeyModifierControl;
}
if ((m_keys[VK_LMENU] & 0x80) != 0 || (m_keys[VK_RMENU] & 0x80) != 0) {
m_mask |= KeyModifierAlt;
}
// note -- no keys for KeyModifierMeta
if ((m_keys[VK_LWIN] & 0x80) != 0 || (m_keys[VK_RWIN] & 0x80) != 0) {
m_mask |= KeyModifierSuper;
}
if ((m_keys[VK_CAPITAL] & 0x01) != 0) {
m_mask |= KeyModifierCapsLock;
}
if ((m_keys[VK_NUMLOCK] & 0x01) != 0) {
m_mask |= KeyModifierNumLock;
}
if ((m_keys[VK_SCROLL] & 0x01) != 0) {
m_mask |= KeyModifierScrollLock;
}
// note -- do not save KeyModifierModeSwitch in m_mask
LOG((CLOG_DEBUG2 "modifiers on update: 0x%04x", m_mask));
}
void
CMSWindowsSecondaryScreen::setToggleState(KeyModifierMask mask)
{
// toggle modifiers that don't match the desired state
if ((mask & KeyModifierCapsLock) != (m_mask & KeyModifierCapsLock)) {
toggleKey(VK_CAPITAL, KeyModifierCapsLock);
}
if ((mask & KeyModifierNumLock) != (m_mask & KeyModifierNumLock)) {
toggleKey(VK_NUMLOCK | 0x100, KeyModifierNumLock);
}
if ((mask & KeyModifierScrollLock) != (m_mask & KeyModifierScrollLock)) {
toggleKey(VK_SCROLL, KeyModifierScrollLock);
}
}
KeyModifierMask
CMSWindowsSecondaryScreen::getToggleState() const
{
return (m_mask & (KeyModifierCapsLock |
KeyModifierNumLock |
KeyModifierScrollLock));
}
// map special KeyID keys to virtual key codes. if the key is an
// extended key then the entry is the virtual key code | 0x100.
// unmapped keys have a 0 entry.
static const UINT g_mapEE00[] =
{
/* 0x00 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x08 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x10 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x18 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x20 */ VK_TAB, 0, 0, 0, 0, 0, 0, 0,
/* 0x28 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x30 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x38 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x40 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x48 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x50 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x58 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x60 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x68 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x70 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x78 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x80 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x88 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x90 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x98 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xa0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xa8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xb0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xb8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xc8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xd8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf8 */ 0, 0, 0, 0, 0, 0, 0, 0
};
static const UINT g_mapEF00[] =
{
/* 0x00 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x08 */ VK_BACK, VK_TAB, 0, VK_CLEAR, 0, VK_RETURN, 0, 0,
/* 0x10 */ 0, 0, 0, VK_PAUSE, VK_SCROLL, 0/*sys-req*/, 0, 0,
/* 0x18 */ 0, 0, 0, VK_ESCAPE, 0, 0, 0, 0,
/* 0x20 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x28 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x30 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x38 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x40 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x48 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x50 */ VK_HOME|0x100, VK_LEFT|0x100, VK_UP|0x100, VK_RIGHT|0x100,
/* 0x54 */ VK_DOWN|0x100, VK_PRIOR|0x100, VK_NEXT|0x100, VK_END|0x100,
/* 0x58 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x60 */ VK_SELECT|0x100, VK_SNAPSHOT|0x100, VK_EXECUTE|0x100, VK_INSERT|0x100,
/* 0x64 */ 0, 0, 0, VK_APPS|0x100,
/* 0x68 */ 0, 0, VK_HELP|0x100, VK_CANCEL|0x100, 0, 0, 0, 0,
/* 0x70 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x78 */ 0, 0, 0, 0, 0, 0, VK_MODECHANGE|0x100, VK_NUMLOCK|0x100,
/* 0x80 */ VK_SPACE, 0, 0, 0, 0, 0, 0, 0,
/* 0x88 */ 0, VK_TAB, 0, 0, 0, VK_RETURN|0x100, 0, 0,
/* 0x90 */ 0, 0, 0, 0, 0, VK_HOME, VK_LEFT, VK_UP,
/* 0x98 */ VK_RIGHT, VK_DOWN, VK_PRIOR, VK_NEXT,
/* 0x9c */ VK_END, 0, VK_INSERT, VK_DELETE,
/* 0xa0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xa8 */ 0, 0, VK_MULTIPLY, VK_ADD,
/* 0xac */ VK_SEPARATOR, VK_SUBTRACT, VK_DECIMAL, VK_DIVIDE|0x100,
/* 0xb0 */ VK_NUMPAD0, VK_NUMPAD1, VK_NUMPAD2, VK_NUMPAD3,
/* 0xb4 */ VK_NUMPAD4, VK_NUMPAD5, VK_NUMPAD6, VK_NUMPAD7,
/* 0xb8 */ VK_NUMPAD8, VK_NUMPAD9, 0, 0, 0, 0, VK_F1, VK_F2,
/* 0xc0 */ VK_F3, VK_F4, VK_F5, VK_F6, VK_F7, VK_F8, VK_F9, VK_F10,
/* 0xc8 */ VK_F11, VK_F12, VK_F13, VK_F14, VK_F15, VK_F16, VK_F17, VK_F18,
/* 0xd0 */ VK_F19, VK_F20, VK_F21, VK_F22, VK_F23, VK_F24, 0, 0,
/* 0xd8 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xe0 */ 0, VK_LSHIFT, VK_RSHIFT, VK_LCONTROL,
/* 0xe4 */ VK_RCONTROL|0x100, VK_CAPITAL, 0, 0,
/* 0xe8 */ 0, VK_LMENU, VK_RMENU|0x100, VK_LWIN|0x100,
/* 0xec */ VK_RWIN|0x100, 0, 0, 0,
/* 0xf0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xf8 */ 0, 0, 0, 0, 0, 0, 0, VK_DELETE|0x100
};
DWORD
CMSWindowsSecondaryScreen::mapButton(ButtonID button, bool press) const
{
// the system will swap the meaning of left/right for us if
// the user has configured a left-handed mouse but we don't
// want it to swap since we want the handedness of the
// server's mouse. so pre-swap for a left-handed mouse.
if (GetSystemMetrics(SM_SWAPBUTTON)) {
switch (button) {
case kButtonLeft:
button = kButtonRight;
break;
case kButtonRight:
button = kButtonLeft;
break;
}
}
// map button id to button flag
switch (button) {
case kButtonLeft:
return press ? MOUSEEVENTF_LEFTDOWN : MOUSEEVENTF_LEFTUP;
case kButtonMiddle:
return press ? MOUSEEVENTF_MIDDLEDOWN : MOUSEEVENTF_MIDDLEUP;
case kButtonRight:
return press ? MOUSEEVENTF_RIGHTDOWN : MOUSEEVENTF_RIGHTUP;
default:
return 0;
}
}
KeyModifierMask
CMSWindowsSecondaryScreen::mapKey(Keystrokes& keys, UINT& virtualKey,
KeyID id, KeyModifierMask mask, EKeyAction action) const
{
virtualKey = 0;
// check for special keys
if ((id & 0xfffff000) == 0xe000) {
if ((id & 0xff00) == 0xee00) {
virtualKey = g_mapEE00[id & 0xff];
}
else if ((id & 0xff00) == 0xef00) {
virtualKey = g_mapEF00[id & 0xff];
}
if (virtualKey == 0) {
LOG((CLOG_DEBUG2 "unknown special key"));
return m_mask;
}
}
// special handling of VK_SNAPSHOT
if ((virtualKey & 0xff) == VK_SNAPSHOT) {
// ignore key repeats on print screen
if (action != kRepeat) {
// get event flags
DWORD flags = 0;
if (isExtendedKey(virtualKey)) {
flags |= KEYEVENTF_EXTENDEDKEY;
}
if (action != kPress) {
flags |= KEYEVENTF_KEYUP;
}
// active window or fullscreen?
BYTE scan = 0;
if ((mask & KeyModifierAlt) == 0) {
scan = 1;
}
// send event
keybd_event(static_cast<BYTE>(virtualKey & 0xff), scan, flags, 0);
}
return m_mask;
}
// get output mask. default output mask carries over the current
// toggle modifier states and includes desired shift, control, alt,
// meta, and super states.
KeyModifierMask outMask = (m_mask &
(KeyModifierCapsLock |
KeyModifierNumLock |
KeyModifierScrollLock));
outMask |= (mask &
(KeyModifierShift |
KeyModifierControl |
KeyModifierAlt |
KeyModifierMeta |
KeyModifierSuper));
// set control and alt if mode shift (AltGr) is requested
if ((mask & KeyModifierModeSwitch) != 0) {
outMask |= KeyModifierControl | KeyModifierAlt;
}
// extract extended key flag
const bool isExtended = ((virtualKey & 0x100) != 0);
virtualKey &= ~0x100;
// if not in map then ask system to convert character
if (virtualKey == 0) {
// translate. return no keys if unknown key.
char ascii;
wchar_t unicode = static_cast<wchar_t>(id & 0x0000ffff);
BOOL error;
if (WideCharToMultiByte(CP_THREAD_ACP,
#if defined(WC_NO_BEST_FIT_CHARS)
WC_NO_BEST_FIT_CHARS |
#endif
WC_COMPOSITECHECK |
WC_DEFAULTCHAR,
&unicode, 1,
&ascii, 1, NULL, &error) == 0 || error) {
LOG((CLOG_DEBUG2 "character %d not in code page", id));
return m_mask;
}
SHORT vk = VkKeyScan(ascii);
if (vk == 0xffff) {
LOG((CLOG_DEBUG2 "no virtual key for character %d", id));
return m_mask;
}
// use whatever shift state VkKeyScan says
// FIXME -- also for control and alt, but it's more difficult
// to determine if control and alt must be off or if it just
// doesn't matter.
outMask &= ~KeyModifierShift;
// convert system modifier mask to our mask
if (HIBYTE(vk) & 1) {
outMask |= KeyModifierShift;
}
if (HIBYTE(vk) & 2) {
outMask |= KeyModifierControl;
}
if (HIBYTE(vk) & 4) {
outMask |= KeyModifierAlt;
}
// handle combination of caps-lock and shift. if caps-lock is
// off locally then use shift as necessary. if caps-lock is on
// locally then it reverses the meaning of shift for keys that
// are subject to case conversion.
if ((outMask & KeyModifierCapsLock) != 0) {
if (tolower(ascii) != toupper(ascii)) {
LOG((CLOG_DEBUG2 "flip shift"));
outMask ^= KeyModifierShift;
}
}
// get virtual key
virtualKey = LOBYTE(vk);
}
// if in map then figure out correct modifier state
else {
// check numeric keypad. note that while KeyID distinguishes
// between the keypad movement keys (e.g. Home, left arrow),
// the virtual keys do not. however, the virtual keys do
// distinguish between keypad numbers and operators (e.g.
// add, multiply) and their main keyboard counterparts.
// therefore, we can ignore the num-lock state for movement
// virtual keys but not for numeric keys.
if (virtualKey >= VK_NUMPAD0 && virtualKey <= VK_DIVIDE) {
// set required shift state based on current numlock state
if ((outMask & KeyModifierNumLock) == 0) {
if ((m_mask & KeyModifierNumLock) == 0) {
LOG((CLOG_DEBUG2 "turn on num lock for keypad key"));
outMask |= KeyModifierNumLock;
}
else {
LOG((CLOG_DEBUG2 "turn on shift for keypad key"));
outMask |= KeyModifierShift;
}
}
}
// check for left tab
else if (id == kKeyLeftTab) {
outMask |= KeyModifierShift;
}
}
LOG((CLOG_DEBUG2 "KeyID %d to virtual key %d mask 0x%04x", id, virtualKey, outMask));
// a list of modifier key info
class CModifierInfo {
public:
KeyModifierMask m_mask;
UINT m_virtualKey;
UINT m_virtualKey2;
bool m_isToggle;
};
static const CModifierInfo s_modifier[] = {
{ KeyModifierShift, VK_LSHIFT, VK_RSHIFT, false },
{ KeyModifierControl, VK_LCONTROL, VK_RCONTROL | 0x100,false },
{ KeyModifierAlt, VK_LMENU, VK_RMENU | 0x100, false },
// note -- no keys for KeyModifierMeta
{ KeyModifierSuper, VK_LWIN | 0x100, VK_RWIN | 0x100, false },
{ KeyModifierCapsLock, VK_CAPITAL, 0, true },
{ KeyModifierNumLock, VK_NUMLOCK | 0x100, 0, true },
{ KeyModifierScrollLock,VK_SCROLL, 0, true }
};
static const unsigned int s_numModifiers =
sizeof(s_modifier) / sizeof(s_modifier[0]);
// note if the key is a modifier
unsigned int modifierIndex;
switch (virtualKey) {
case VK_SHIFT:
case VK_LSHIFT:
case VK_RSHIFT:
modifierIndex = 0;
break;
case VK_CONTROL:
case VK_LCONTROL:
case VK_RCONTROL:
modifierIndex = 1;
break;
case VK_MENU:
case VK_LMENU:
case VK_RMENU:
modifierIndex = 2;
break;
case VK_LWIN:
case VK_RWIN:
modifierIndex = 3;
break;
case VK_CAPITAL:
modifierIndex = 4;
break;
case VK_NUMLOCK:
modifierIndex = 5;
break;
case VK_SCROLL:
modifierIndex = 6;
break;
default:
modifierIndex = s_numModifiers;
break;
}
const bool isModifier = (modifierIndex != s_numModifiers);
// add the key events required to get to the modifier state
// necessary to generate an event yielding id. also save the
// key events required to restore the state. if the key is
// a modifier key then skip this because modifiers should not
// modify modifiers.
Keystrokes undo;
Keystroke keystroke;
if (outMask != m_mask && !isModifier) {
for (unsigned int i = 0; i < s_numModifiers; ++i) {
KeyModifierMask bit = s_modifier[i].m_mask;
if ((outMask & bit) != (m_mask & bit)) {
if ((outMask & bit) != 0) {
// modifier is not active but should be. if the
// modifier is a toggle then toggle it on with a
// press/release, otherwise activate it with a
// press.
keystroke.m_virtualKey = s_modifier[i].m_virtualKey;
keystroke.m_press = true;
keystroke.m_repeat = false;
keys.push_back(keystroke);
if (s_modifier[i].m_isToggle) {
keystroke.m_press = false;
keys.push_back(keystroke);
undo.push_back(keystroke);
keystroke.m_press = true;
undo.push_back(keystroke);
}
else {
keystroke.m_press = false;
undo.push_back(keystroke);
}
}
else {
// modifier is active but should not be. if the
// modifier is a toggle then toggle it off with a
// press/release, otherwise deactivate it with a
// release. we must check each keycode for the
// modifier if not a toggle.
if (s_modifier[i].m_isToggle) {
keystroke.m_virtualKey = s_modifier[i].m_virtualKey;
keystroke.m_press = true;
keystroke.m_repeat = false;
keys.push_back(keystroke);
keystroke.m_press = false;
keys.push_back(keystroke);
undo.push_back(keystroke);
keystroke.m_press = true;
undo.push_back(keystroke);
}
else {
UINT key = s_modifier[i].m_virtualKey;
if ((m_keys[key & 0xff] & 0x80) != 0) {
keystroke.m_virtualKey = key;
keystroke.m_press = false;
keystroke.m_repeat = false;
keys.push_back(keystroke);
keystroke.m_press = true;
undo.push_back(keystroke);
}
key = s_modifier[i].m_virtualKey2;
if (key != 0 && (m_keys[key & 0xff] & 0x80) != 0) {
keystroke.m_virtualKey = key;
keystroke.m_press = false;
keystroke.m_repeat = false;
keys.push_back(keystroke);
keystroke.m_press = true;
undo.push_back(keystroke);
}
}
}
}
}
}
// add the key event
keystroke.m_virtualKey = virtualKey;
if (isExtended) {
keystroke.m_virtualKey |= 0x100;
}
switch (action) {
case kPress:
keystroke.m_press = true;
keystroke.m_repeat = false;
keys.push_back(keystroke);
break;
case kRelease:
keystroke.m_press = false;
keystroke.m_repeat = false;
keys.push_back(keystroke);
break;
case kRepeat:
keystroke.m_press = true;
keystroke.m_repeat = true;
keys.push_back(keystroke);
break;
}
// add key events to restore the modifier state. apply events in
// the reverse order that they're stored in undo.
while (!undo.empty()) {
keys.push_back(undo.back());
undo.pop_back();
}
// if the key is a modifier key then compute the modifier mask after
// this key is pressed.
mask = m_mask;
if (isModifier && action != kRepeat) {
// toggle keys modify the state on release. other keys set
// the bit on press and clear the bit on release.
const CModifierInfo& modifier = s_modifier[modifierIndex];
if (modifier.m_isToggle) {
if (action == kRelease) {
mask ^= modifier.m_mask;
}
}
else if (action == kPress) {
mask |= modifier.m_mask;
}
else {
// can't reset bit until all keys that set it are released.
// scan those keys to see if any are pressed.
bool down = false;
if (virtualKey != (modifier.m_virtualKey & 0xff) &&
(m_keys[modifier.m_virtualKey & 0xff] & 0x80) != 0) {
down = true;
}
if (modifier.m_virtualKey2 != 0 &&
virtualKey != (modifier.m_virtualKey2 & 0xff) &&
(m_keys[modifier.m_virtualKey2 & 0xff] & 0x80) != 0) {
down = true;
}
if (!down)
mask &= ~modifier.m_mask;
}
}
LOG((CLOG_DEBUG2 "previous modifiers 0x%04x, final modifiers 0x%04x", m_mask, mask));
return mask;
}
void
CMSWindowsSecondaryScreen::doKeystrokes(const Keystrokes& keys, SInt32 count)
{
// do nothing if no keys or no repeats
if (count < 1 || keys.empty()) {
return;
}
// generate key events
for (Keystrokes::const_iterator k = keys.begin(); k != keys.end(); ) {
if (k->m_repeat) {
// repeat from here up to but not including the next key
// with m_repeat == false count times.
Keystrokes::const_iterator start = k;
for (; count > 0; --count) {
// send repeating events
for (k = start; k != keys.end() && k->m_repeat; ++k) {
sendKeyEvent(k->m_virtualKey, k->m_press);
}
}
// note -- k is now on the first non-repeat key after the
// repeat keys, exactly where we'd like to continue from.
}
else {
// send event
sendKeyEvent(k->m_virtualKey, k->m_press);
// next key
++k;
}
}
}
void
CMSWindowsSecondaryScreen::releaseKeys()
{
// release keys that we've synthesized a press for and only those
// keys. we don't want to synthesize a release on a key the user
// is still physically pressing.
CLock lock(&m_mutex);
m_screen->syncDesktop();
// release left/right modifier keys first. if the platform doesn't
// support them then they won't be set and the non-side-distinuishing
// key will retain its state. if the platform does support them then
// the non-side-distinguishing will be reset.
if ((m_fakeKeys[VK_LSHIFT] & 0x80) != 0) {
sendKeyEvent(VK_LSHIFT, false);
m_fakeKeys[VK_SHIFT] = 0;
m_fakeKeys[VK_LSHIFT] = 0;
}
if ((m_fakeKeys[VK_RSHIFT] & 0x80) != 0) {
sendKeyEvent(VK_RSHIFT, false);
m_fakeKeys[VK_SHIFT] = 0;
m_fakeKeys[VK_RSHIFT] = 0;
}
if ((m_fakeKeys[VK_LCONTROL] & 0x80) != 0) {
sendKeyEvent(VK_LCONTROL, false);
m_fakeKeys[VK_CONTROL] = 0;
m_fakeKeys[VK_LCONTROL] = 0;
}
if ((m_fakeKeys[VK_RCONTROL] & 0x80) != 0) {
sendKeyEvent(VK_RCONTROL, false);
m_fakeKeys[VK_CONTROL] = 0;
m_fakeKeys[VK_RCONTROL] = 0;
}
if ((m_fakeKeys[VK_LMENU] & 0x80) != 0) {
sendKeyEvent(VK_LMENU, false);
m_fakeKeys[VK_MENU] = 0;
m_fakeKeys[VK_LMENU] = 0;
}
if ((m_fakeKeys[VK_RMENU] & 0x80) != 0) {
sendKeyEvent(VK_RMENU, false);
m_fakeKeys[VK_MENU] = 0;
m_fakeKeys[VK_RMENU] = 0;
}
// now check all the other keys
for (UInt32 i = 0; i < sizeof(m_fakeKeys) / sizeof(m_fakeKeys[0]); ++i) {
if ((m_fakeKeys[i] & 0x80) != 0) {
sendKeyEvent(i, false);
m_fakeKeys[i] = 0;
}
}
}
void
CMSWindowsSecondaryScreen::toggleKey(UINT virtualKey, KeyModifierMask mask)
{
// send key events to simulate a press and release
sendKeyEvent(virtualKey, true);
sendKeyEvent(virtualKey, false);
// toggle shadow state
m_mask ^= mask;
m_keys[virtualKey & 0xff] ^= 0x01;
m_fakeKeys[virtualKey & 0xff] ^= 0x01;
}
UINT
CMSWindowsSecondaryScreen::virtualKeyToScanCode(UINT& virtualKey) const
{
// try mapping given virtual key
UINT code = MapVirtualKey(virtualKey & 0xff, 0);
if (code != 0) {
return code;
}
// no dice. if the virtual key distinguishes between left/right
// then try the one that doesn't distinguish sides. windows (or
// keyboard drivers) are inconsistent in their treatment of these
// virtual keys. the following behaviors have been observed:
//
// win2k (gateway desktop):
// MapVirtualKey(vk, 0):
// VK_SHIFT == VK_LSHIFT != VK_RSHIFT
// VK_CONTROL == VK_LCONTROL == VK_RCONTROL
// VK_MENU == VK_LMENU == VK_RMENU
// MapVirtualKey(sc, 3):
// VK_LSHIFT and VK_RSHIFT mapped independently
// VK_LCONTROL is mapped but not VK_RCONTROL
// VK_LMENU is mapped but not VK_RMENU
//
// win me (sony vaio laptop):
// MapVirtualKey(vk, 0):
// VK_SHIFT mapped; VK_LSHIFT, VK_RSHIFT not mapped
// VK_CONTROL mapped; VK_LCONTROL, VK_RCONTROL not mapped
// VK_MENU mapped; VK_LMENU, VK_RMENU not mapped
// MapVirtualKey(sc, 3):
// all scan codes unmapped (function apparently unimplemented)
switch (virtualKey & 0xff) {
case VK_LSHIFT:
case VK_RSHIFT:
virtualKey = VK_SHIFT;
return MapVirtualKey(VK_SHIFT, 0);
case VK_LCONTROL:
case VK_RCONTROL:
virtualKey = VK_CONTROL;
return MapVirtualKey(VK_CONTROL, 0);
case VK_LMENU:
case VK_RMENU:
virtualKey = VK_MENU;
return MapVirtualKey(VK_MENU, 0);
default:
return 0;
}
}
bool
CMSWindowsSecondaryScreen::isExtendedKey(UINT virtualKey) const
{
// see if we've already encoded the extended flag
if ((virtualKey & 0x100) != 0) {
return true;
}
// check known virtual keys
switch (virtualKey & 0xff) {
case VK_NUMLOCK:
case VK_RCONTROL:
case VK_RMENU:
case VK_LWIN:
case VK_RWIN:
case VK_APPS:
return true;
default:
return false;
}
}
void
CMSWindowsSecondaryScreen::sendKeyEvent(UINT virtualKey, bool press)
{
DWORD flags = 0;
if (isExtendedKey(virtualKey)) {
flags |= KEYEVENTF_EXTENDEDKEY;
}
if (!press) {
flags |= KEYEVENTF_KEYUP;
}
const UINT code = virtualKeyToScanCode(virtualKey);
keybd_event(static_cast<BYTE>(virtualKey & 0xff),
static_cast<BYTE>(code), flags, 0);
LOG((CLOG_DEBUG1 "send key %d, 0x%04x, %s%s", virtualKey & 0xff, code, ((flags & KEYEVENTF_KEYUP) ? "release" : "press"), ((flags & KEYEVENTF_EXTENDEDKEY) ? " extended" : "")));
}