This commit is contained in:
victoryang00
2025-07-11 14:13:03 +00:00
parent 8815011976
commit 958a908ab1
2 changed files with 4 additions and 0 deletions

View File

@@ -22,6 +22,8 @@ This is where eBPF comes to the rescue! By using uprobes, we can intercept CUDA
- Error codes and failures
- Timing of operations
This blog is mainly focus on the CPU side of the CUDA API calls, for fined-grained tracing of GPU operations, you can see [eGPU](https://dl.acm.org/doi/10.1145/3723851.3726984) paper and [bpftime](https://github.com/eunomia-bpf/bpftime) project.
## Key CUDA Functions We Trace
Our tracer monitors several critical CUDA functions that represent the main operations in GPU computing. Understanding these functions helps you interpret the tracing results and diagnose issues in your CUDA applications:

View File

@@ -22,6 +22,8 @@ CUDACompute Unified Device Architecture计算统一设备架构是NVIDI
- 错误代码和失败原因
- 操作的时间信息
本教程主要关注CPU侧的CUDA API调用对于细粒度的GPU操作追踪你可以参考[eGPU](https://dl.acm.org/doi/10.1145/3723851.3726984)论文和[bpftime](https://github.com/eunomia-bpf/bpftime)项目。
## eBPF技术背景与GPU追踪的挑战
eBPFExtended Berkeley Packet Filter最初是为网络数据包过滤而设计的但现在已经发展成为一个强大的内核编程框架使开发人员能够在内核空间运行用户定义的程序而无需修改内核源代码或加载内核模块。eBPF的安全性通过静态分析和运行时验证器来保证这使得它能够在生产环境中安全地运行。