Files
bpf-developer-tutorial/src/20-tc/README.zh.md
2024-10-20 07:20:38 +00:00

109 lines
5.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# eBPF 入门实践教程二十:使用 eBPF 进行 tc 流量控制
## 背景
Linux 的流量控制子系统Traffic Control, tc在内核中存在了多年类似于 iptables 和 netfilter 的关系tc 也包括一个用户态的 tc 程序和内核态的 trafiic control 框架,主要用于从速率、顺序等方面控制数据包的发送和接收。从 Linux 4.1 开始tc 增加了一些新的挂载点,并支持将 eBPF 程序作为 filter 加载到这些挂载点上。
## tc 概述
从协议栈上看tc 位于链路层,其所在位置已经完成了 sk_buff 的分配,要晚于 xdp。为了实现对数据包发送和接收的控制tc 使用队列结构来临时保存并组织数据包,在 tc 子系统中对应的数据结构和算法控制机制被抽象为 qdiscQueueing discipline其对外暴露数据包入队和出队的两个回调接口并在内部隐藏排队算法实现。在 qdisc 中我们可以基于 filter 和 class 实现复杂的树形结构,其中 filter 被挂载到 qdisc 或 class 上用于实现具体的过滤逻辑,返回值决定了该数据包是否属于特定 class。
当数据包到达顶层 qdisc 时,其入队接口被调用,其上挂载的 filter 被依次执行直到一个 filter 匹配成功;此后数据包被送入该 filter 指向的 class进入该 class 配置的 qdisc 处理流程中。tc 框架提供了所谓 classifier-action 机制,即在数据包匹配到特定 filter 时执行该 filter 所挂载的 action 对数据包进行处理,实现了完整的数据包分类和处理机制。
现有的 tc 为 eBPF 提供了 direct-action 模式,它使得一个作为 filter 加载的 eBPF 程序可以返回像 `TC_ACT_OK` 等 tc action 的返回值,而不是像传统的 filter 那样仅仅返回一个 classid 并把对数据包的处理交给 action 模块。现在eBPF 程序可以被挂载到特定的 qdisc 上,并完成对数据包的分类和处理动作。
## 编写 eBPF 程序
```c
#include <vmlinux.h>
#include <bpf/bpf_endian.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#define TC_ACT_OK 0
#define ETH_P_IP 0x0800 /* Internet Protocol packet */
/// @tchook {"ifindex":1, "attach_point":"BPF_TC_INGRESS"}
/// @tcopts {"handle":1, "priority":1}
SEC("tc")
int tc_ingress(struct __sk_buff *ctx)
{
void *data_end = (void *)(__u64)ctx->data_end;
void *data = (void *)(__u64)ctx->data;
struct ethhdr *l2;
struct iphdr *l3;
if (ctx->protocol != bpf_htons(ETH_P_IP))
return TC_ACT_OK;
l2 = data;
if ((void *)(l2 + 1) > data_end)
return TC_ACT_OK;
l3 = (struct iphdr *)(l2 + 1);
if ((void *)(l3 + 1) > data_end)
return TC_ACT_OK;
bpf_printk("Got IP packet: tot_len: %d, ttl: %d", bpf_ntohs(l3->tot_len), l3->ttl);
return TC_ACT_OK;
}
char __license[] SEC("license") = "GPL";
```
这段代码定义了一个 eBPF 程序,它可以通过 Linux TCTransmission Control来捕获数据包并进行处理。在这个程序中我们限定了只捕获 IPv4 协议的数据包,然后通过 bpf_printk 函数打印出数据包的总长度和 Time-To-LiveTTL字段的值。
需要注意的是,我们在代码中使用了一些 BPF 库函数,例如 bpf_htons 和 bpf_ntohs 函数,它们用于进行网络字节序和主机字节序之间的转换。此外,我们还使用了一些注释来为 TC 提供附加点和选项信息。例如,在这段代码的开头,我们使用了以下注释:
```c
/// @tchook {"ifindex":1, "attach_point":"BPF_TC_INGRESS"}
/// @tcopts {"handle":1, "priority":1}
```
这些注释告诉 TC 将 eBPF 程序附加到网络接口的 ingress 附加点,并指定了 handle 和 priority 选项的值。关于 libbpf 中 tc 相关的 API 可以参考 [patchwork](https://patchwork.kernel.org/project/netdevbpf/patch/20210512103451.989420-3-memxor@gmail.com/) 中的介绍。
总之,这段代码实现了一个简单的 eBPF 程序,用于捕获数据包并打印出它们的信息。
## 编译运行
通过容器编译:
```console
docker run -it -v `pwd`/:/src/ ghcr.io/eunomia-bpf/ecc-`uname -m`:latest
```
或是通过 `ecc` 编译:
```console
$ ecc tc.bpf.c
Compiling bpf object...
Packing ebpf object and config into package.json...
```
并通过 `ecli` 运行:
```shell
sudo ecli run ./package.json
```
可以通过如下方式查看程序的输出:
```console
$ sudo cat /sys/kernel/debug/tracing/trace_pipe
node-1254811 [007] ..s1 8737831.671074: 0: Got IP packet: tot_len: 79, ttl: 64
sshd-1254728 [006] ..s1 8737831.674334: 0: Got IP packet: tot_len: 79, ttl: 64
sshd-1254728 [006] ..s1 8737831.674349: 0: Got IP packet: tot_len: 72, ttl: 64
node-1254811 [007] ..s1 8737831.674550: 0: Got IP packet: tot_len: 71, ttl: 64
```
## 总结
本文介绍了如何向 TC 流量控制子系统挂载 eBPF 类型的 filter 来实现对链路层数据包的排队处理。基于 eunomia-bpf 提供的通过注释向 libbpf 传递参数的方案,我们可以将自己编写的 tc BPF 程序以指定选项挂载到目标网络设备,并借助内核的 sk_buff 结构对数据包进行过滤处理。
如果您希望学习更多关于 eBPF 的知识和实践,可以访问我们的教程代码仓库 <https://github.com/eunomia-bpf/bpf-developer-tutorial> 或网站 <https://eunomia.dev/zh/tutorials/> 以获取更多示例和完整的教程。
## 参考
+ <http://just4coding.com/2022/08/05/tc/>
+ <https://arthurchiao.art/blog/understanding-tc-da-mode-zh/>