Files
bpf-developer-tutorial/9-runqlat/README.md
2023-01-25 20:01:17 +08:00

278 lines
10 KiB
Markdown
Executable File
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# eBPF 入门开发实践教程九:一个 Linux 内核 BPF 程序,通过柱状图来总结调度程序运行队列延迟,显示任务等待运行在 CPU 上的时间长度
eBPF (Extended Berkeley Packet Filter) 是 Linux 内核上的一个强大的网络和性能分析工具。它允许开发者在内核运行时动态加载、更新和运行用户定义的代码。
## runqlat是什么
bcc-tools 是一组用于在 Linux 系统上使用 BPF 程序的工具。runqlat 是 bcc-tools 中的一个工具,用于分析 Linux 系统的调度性能。具体来说runqlat 用于测量一个任务在被调度到 CPU 上运行之前在运行队列中等待的时间。这些信息对于识别性能瓶颈和提高 Linux 内核调度算法的整体效率非常有用。
## runqlat 原理
runqlat 使用内核跟踪点和函数探针的结合来测量进程在运行队列中的时间。当进程被排队时trace_enqueue 函数会在一个映射中记录时间戳。当进程被调度到 CPU 上运行时handle_switch 函数会检索时间戳,并计算当前时间与排队时间之间的时间差。这个差值(或 delta然后用于更新进程的直方图该直方图记录运行队列延迟的分布。该直方图可用于分析 Linux 内核的调度性能。
## runqlat 代码实现
首先我们需要编写一个源代码文件 runqlat.bpf.c:
```c
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2020 Wenbo Zhang
#include <vmlinux.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_core_read.h>
#include <bpf/bpf_tracing.h>
#include "runqlat.h"
#include "bits.bpf.h"
#include "maps.bpf.h"
#include "core_fixes.bpf.h"
#define MAX_ENTRIES 10240
#define TASK_RUNNING 0
const volatile bool filter_cg = false;
const volatile bool targ_per_process = false;
const volatile bool targ_per_thread = false;
const volatile bool targ_per_pidns = false;
const volatile bool targ_ms = false;
const volatile pid_t targ_tgid = 0;
struct {
__uint(type, BPF_MAP_TYPE_CGROUP_ARRAY);
__type(key, u32);
__type(value, u32);
__uint(max_entries, 1);
} cgroup_map SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, u32);
__type(value, u64);
} start SEC(".maps");
static struct hist zero;
/// @sample {"interval": 1000, "type" : "log2_hist"}
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, MAX_ENTRIES);
__type(key, u32);
__type(value, struct hist);
} hists SEC(".maps");
static int trace_enqueue(u32 tgid, u32 pid)
{
u64 ts;
if (!pid)
return 0;
if (targ_tgid && targ_tgid != tgid)
return 0;
ts = bpf_ktime_get_ns();
bpf_map_update_elem(&start, &pid, &ts, BPF_ANY);
return 0;
}
static unsigned int pid_namespace(struct task_struct *task)
{
struct pid *pid;
unsigned int level;
struct upid upid;
unsigned int inum;
/* get the pid namespace by following task_active_pid_ns(),
* pid->numbers[pid->level].ns
*/
pid = BPF_CORE_READ(task, thread_pid);
level = BPF_CORE_READ(pid, level);
bpf_core_read(&upid, sizeof(upid), &pid->numbers[level]);
inum = BPF_CORE_READ(upid.ns, ns.inum);
return inum;
}
static int handle_switch(bool preempt, struct task_struct *prev, struct task_struct *next)
{
struct hist *histp;
u64 *tsp, slot;
u32 pid, hkey;
s64 delta;
if (filter_cg && !bpf_current_task_under_cgroup(&cgroup_map, 0))
return 0;
if (get_task_state(prev) == TASK_RUNNING)
trace_enqueue(BPF_CORE_READ(prev, tgid), BPF_CORE_READ(prev, pid));
pid = BPF_CORE_READ(next, pid);
tsp = bpf_map_lookup_elem(&start, &pid);
if (!tsp)
return 0;
delta = bpf_ktime_get_ns() - *tsp;
if (delta < 0)
goto cleanup;
if (targ_per_process)
hkey = BPF_CORE_READ(next, tgid);
else if (targ_per_thread)
hkey = pid;
else if (targ_per_pidns)
hkey = pid_namespace(next);
else
hkey = -1;
histp = bpf_map_lookup_or_try_init(&hists, &hkey, &zero);
if (!histp)
goto cleanup;
if (!histp->comm[0])
bpf_probe_read_kernel_str(&histp->comm, sizeof(histp->comm),
next->comm);
if (targ_ms)
delta /= 1000000U;
else
delta /= 1000U;
slot = log2l(delta);
if (slot >= MAX_SLOTS)
slot = MAX_SLOTS - 1;
__sync_fetch_and_add(&histp->slots[slot], 1);
cleanup:
bpf_map_delete_elem(&start, &pid);
return 0;
}
SEC("raw_tp/sched_wakeup")
int BPF_PROG(handle_sched_wakeup, struct task_struct *p)
{
if (filter_cg && !bpf_current_task_under_cgroup(&cgroup_map, 0))
return 0;
return trace_enqueue(BPF_CORE_READ(p, tgid), BPF_CORE_READ(p, pid));
}
SEC("raw_tp/sched_wakeup_new")
int BPF_PROG(handle_sched_wakeup_new, struct task_struct *p)
{
if (filter_cg && !bpf_current_task_under_cgroup(&cgroup_map, 0))
return 0;
return trace_enqueue(BPF_CORE_READ(p, tgid), BPF_CORE_READ(p, pid));
}
SEC("raw_tp/sched_switch")
int BPF_PROG(handle_sched_switch, bool preempt, struct task_struct *prev, struct task_struct *next)
{
return handle_switch(preempt, prev, next);
}
char LICENSE[] SEC("license") = "GPL";
```
然后我们需要定义一个头文件`runqlat.h`,用来给用户态处理从内核态上报的事件:
```c
/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
#ifndef __RUNQLAT_H
#define __RUNQLAT_H
#define TASK_COMM_LEN 16
#define MAX_SLOTS 26
struct hist {
__u32 slots[MAX_SLOTS];
char comm[TASK_COMM_LEN];
};
#endif /* __RUNQLAT_H */
```
这是一个 Linux 内核 BPF 程序旨在收集和报告运行队列的延迟。BPF 是 Linux 内核中一项技术,它允许将程序附加到内核中的特定点并进行安全高效的执行。这些程序可用于收集有关内核行为的信息,并实现自定义行为。这个 BPF 程序使用 BPF maps 来收集有关任务何时从内核的运行队列中排队和取消排队的信息,并记录任务在被安排执行之前在运行队列上等待的时间。然后,它使用这些信息生成直方图,显示不同组任务的运行队列延迟分布。这些直方图可用于识别和诊断内核调度行为中的性能问题。
## 编译运行
eunomia-bpf 是一个结合 Wasm 的开源 eBPF 动态加载运行时和开发工具链,它的目的是简化 eBPF 程序的开发、构建、分发、运行。可以参考 <https://github.com/eunomia-bpf/eunomia-bpf> 下载和安装 ecc 编译工具链和 ecli 运行时。我们使用 eunomia-bpf 编译运行这个例子。
Compile:
```shell
docker run -it -v `pwd`/:/src/ yunwei37/ebpm:latest
```
或者
```console
$ ecc runqlat.bpf.c runqlat.h
Compiling bpf object...
Generating export types...
Packing ebpf object and config into package.json...
```
Run:
```console
$ sudo ecli examples/bpftools/runqlat/package.json -h
Usage: runqlat_bpf [--help] [--version] [--verbose] [--filter_cg] [--targ_per_process] [--targ_per_thread] [--targ_per_pidns] [--targ_ms] [--targ_tgid VAR]
A simple eBPF program
Optional arguments:
-h, --help shows help message and exits
-v, --version prints version information and exits
--verbose prints libbpf debug information
--filter_cg set value of bool variable filter_cg
--targ_per_process set value of bool variable targ_per_process
--targ_per_thread set value of bool variable targ_per_thread
--targ_per_pidns set value of bool variable targ_per_pidns
--targ_ms set value of bool variable targ_ms
--targ_tgid set value of pid_t variable targ_tgid
Built with eunomia-bpf framework.
See https://github.com/eunomia-bpf/eunomia-bpf for more information.
$ sudo ecli examples/bpftools/runqlat/package.json
key = 4294967295
comm = rcu_preempt
(unit) : count distribution
0 -> 1 : 9 |**** |
2 -> 3 : 6 |** |
4 -> 7 : 12 |***** |
8 -> 15 : 28 |************* |
16 -> 31 : 40 |******************* |
32 -> 63 : 83 |****************************************|
64 -> 127 : 57 |*************************** |
128 -> 255 : 19 |********* |
256 -> 511 : 11 |***** |
512 -> 1023 : 2 | |
1024 -> 2047 : 2 | |
2048 -> 4095 : 0 | |
4096 -> 8191 : 0 | |
8192 -> 16383 : 0 | |
16384 -> 32767 : 1 | |
$ sudo ecli examples/bpftools/runqlat/package.json --targ_per_process
key = 3189
comm = cpptools
(unit) : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 1 |*** |
16 -> 31 : 2 |******* |
32 -> 63 : 11 |****************************************|
64 -> 127 : 8 |***************************** |
128 -> 255 : 3 |********** |
```
## 总结
runqlat 是一个 Linux 内核 BPF 程序,通过柱状图来总结调度程序运行队列延迟,显示任务等待运行在 CPU 上的时间长度。编译这个程序可以使用 ecc 工具,运行时可以使用 ecli 命令。
runqlat 是一种用于监控Linux内核中进程调度延迟的工具。它可以帮助您了解进程在内核中等待执行的时间并根据这些信息优化进程调度提高系统的性能。可以在 libbpf-tools 中找到最初的源代码:<https://github.com/iovisor/bcc/blob/master/libbpf-tools/runqlat.bpf.c>
更多的例子和详细的开发指南,请参考 eunomia-bpf 的官方文档:<https://github.com/eunomia-bpf/eunomia-bpf>
完整的教程和源代码已经全部开源,可以在 <https://github.com/eunomia-bpf/bpf-developer-tutorial> 中查看。