mirror of
https://github.com/jxxghp/MoviePilot.git
synced 2026-02-02 18:22:39 +08:00
feat(search): 添加AI推荐功能并优化相关逻辑
This commit is contained in:
@@ -16,6 +16,7 @@ from app.agent.prompt import PromptManager
|
||||
from app.agent.tools.factory import MoviePilotToolFactory
|
||||
from app.chain import ChainBase
|
||||
from app.core.config import settings
|
||||
from app.helper.llm import LLMHelper
|
||||
from app.helper.message import MessageHelper
|
||||
from app.log import logger
|
||||
from app.schemas import Notification
|
||||
@@ -64,57 +65,7 @@ class MoviePilotAgent:
|
||||
|
||||
def _initialize_llm(self):
|
||||
"""初始化LLM模型"""
|
||||
provider = settings.LLM_PROVIDER.lower()
|
||||
api_key = settings.LLM_API_KEY
|
||||
|
||||
if provider == "google":
|
||||
if settings.PROXY_HOST:
|
||||
from langchain_openai import ChatOpenAI
|
||||
return ChatOpenAI(
|
||||
model=settings.LLM_MODEL,
|
||||
api_key=api_key,
|
||||
max_retries=3,
|
||||
base_url="https://generativelanguage.googleapis.com/v1beta/openai",
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=True,
|
||||
callbacks=[self.callback_handler],
|
||||
stream_usage=True,
|
||||
openai_proxy=settings.PROXY_HOST
|
||||
)
|
||||
else:
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
return ChatGoogleGenerativeAI(
|
||||
model=settings.LLM_MODEL,
|
||||
google_api_key=api_key,
|
||||
max_retries=3,
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=True,
|
||||
callbacks=[self.callback_handler]
|
||||
)
|
||||
elif provider == "deepseek":
|
||||
from langchain_deepseek import ChatDeepSeek
|
||||
return ChatDeepSeek(
|
||||
model=settings.LLM_MODEL,
|
||||
api_key=api_key,
|
||||
max_retries=3,
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=True,
|
||||
callbacks=[self.callback_handler],
|
||||
stream_usage=True
|
||||
)
|
||||
else:
|
||||
from langchain_openai import ChatOpenAI
|
||||
return ChatOpenAI(
|
||||
model=settings.LLM_MODEL,
|
||||
api_key=api_key,
|
||||
max_retries=3,
|
||||
base_url=settings.LLM_BASE_URL,
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=True,
|
||||
callbacks=[self.callback_handler],
|
||||
stream_usage=True,
|
||||
openai_proxy=settings.PROXY_HOST
|
||||
)
|
||||
return LLMHelper.get_llm(streaming=True, callbacks=[self.callback_handler])
|
||||
|
||||
def _initialize_tools(self) -> List:
|
||||
"""初始化工具列表"""
|
||||
|
||||
@@ -10,6 +10,7 @@ from app.agent.tools.base import MoviePilotTool
|
||||
from app.chain.search import SearchChain
|
||||
from app.log import logger
|
||||
from app.schemas.types import MediaType
|
||||
from app.utils.string import StringUtils
|
||||
|
||||
|
||||
class SearchTorrentsInput(BaseModel):
|
||||
@@ -99,7 +100,7 @@ class SearchTorrentsTool(MoviePilotTool):
|
||||
if t.torrent_info:
|
||||
simplified["torrent_info"] = {
|
||||
"title": t.torrent_info.title,
|
||||
"size": t.torrent_info.size,
|
||||
"size": StringUtils.format_size(t.torrent_info.size),
|
||||
"seeders": t.torrent_info.seeders,
|
||||
"peers": t.torrent_info.peers,
|
||||
"site_name": t.torrent_info.site_name,
|
||||
|
||||
@@ -1,14 +1,16 @@
|
||||
from typing import List, Any, Optional
|
||||
|
||||
from fastapi import APIRouter, Depends
|
||||
from fastapi import APIRouter, Depends, Body
|
||||
|
||||
from app import schemas
|
||||
from app.chain.media import MediaChain
|
||||
from app.chain.search import SearchChain
|
||||
from app.chain.ai_recommend import AIRecommendChain
|
||||
from app.core.config import settings
|
||||
from app.core.event import eventmanager
|
||||
from app.core.metainfo import MetaInfo
|
||||
from app.core.security import verify_token
|
||||
from app.log import logger
|
||||
from app.schemas import MediaRecognizeConvertEventData
|
||||
from app.schemas.types import MediaType, ChainEventType
|
||||
|
||||
@@ -36,6 +38,9 @@ async def search_by_id(mediaid: str,
|
||||
"""
|
||||
根据TMDBID/豆瓣ID精确搜索站点资源 tmdb:/douban:/bangumi:
|
||||
"""
|
||||
# 取消正在运行的AI推荐(会清除数据库缓存)
|
||||
AIRecommendChain().cancel_ai_recommend()
|
||||
|
||||
if mtype:
|
||||
media_type = MediaType(mtype)
|
||||
else:
|
||||
@@ -159,6 +164,9 @@ async def search_by_title(keyword: Optional[str] = None,
|
||||
"""
|
||||
根据名称模糊搜索站点资源,支持分页,关键词为空是返回首页资源
|
||||
"""
|
||||
# 取消正在运行的AI推荐并清除数据库缓存
|
||||
AIRecommendChain().cancel_ai_recommend()
|
||||
|
||||
torrents = await SearchChain().async_search_by_title(
|
||||
title=keyword, page=page,
|
||||
sites=[int(site) for site in sites.split(",") if site] if sites else None,
|
||||
@@ -167,3 +175,82 @@ async def search_by_title(keyword: Optional[str] = None,
|
||||
if not torrents:
|
||||
return schemas.Response(success=False, message="未搜索到任何资源")
|
||||
return schemas.Response(success=True, data=[torrent.to_dict() for torrent in torrents])
|
||||
|
||||
|
||||
@router.post("/recommend", summary="AI推荐资源", response_model=schemas.Response)
|
||||
async def recommend_search_results(
|
||||
filtered_indices: Optional[List[int]] = Body(None, embed=True, description="筛选后的索引列表"),
|
||||
check_only: bool = Body(False, embed=True, description="仅检查状态,不启动新任务"),
|
||||
force: bool = Body(False, embed=True, description="强制重新推荐,清除旧结果"),
|
||||
_: schemas.TokenPayload = Depends(verify_token)) -> Any:
|
||||
"""
|
||||
AI推荐资源 - 轮询接口
|
||||
前端轮询此接口,发送筛选后的索引(如果有筛选)
|
||||
后端根据请求变化自动取消旧任务并启动新任务
|
||||
|
||||
参数:
|
||||
- filtered_indices: 筛选后的索引列表(可选,为空或不提供时使用所有结果)
|
||||
- check_only: 仅检查状态(首次打开页面时使用,避免触发不必要的重新推理)
|
||||
- force: 强制重新推荐(清除旧结果并重新启动)
|
||||
|
||||
返回数据结构:
|
||||
{
|
||||
"success": bool,
|
||||
"message": string, // 错误信息(仅在错误时存在)
|
||||
"data": {
|
||||
"status": string, // 状态: disabled | idle | running | completed | error
|
||||
"results": array // 推荐结果(仅status=completed时存在)
|
||||
}
|
||||
}
|
||||
"""
|
||||
# 从缓存获取上次搜索结果
|
||||
results = await SearchChain().async_last_search_results() or []
|
||||
if not results:
|
||||
return schemas.Response(success=False, message="没有可用的搜索结果", data={
|
||||
"status": "error"
|
||||
})
|
||||
|
||||
recommend_chain = AIRecommendChain()
|
||||
|
||||
# 如果是强制模式,先取消并清除旧结果,然后直接启动新任务
|
||||
if force:
|
||||
logger.info("收到新推荐请求,清除旧结果并启动新任务")
|
||||
recommend_chain.cancel_ai_recommend()
|
||||
recommend_chain.start_recommend_task(filtered_indices, len(results), results)
|
||||
# 直接返回运行中状态
|
||||
return schemas.Response(success=True, data={
|
||||
"status": "running"
|
||||
})
|
||||
|
||||
# 如果是仅检查模式,不传递 filtered_indices(避免触发请求变化检测)
|
||||
if check_only:
|
||||
# 返回当前运行状态,不做任何任务启动或取消操作
|
||||
current_status = recommend_chain.get_current_status_only()
|
||||
# 如果有错误,将错误信息放到message中
|
||||
if current_status.get("status") == "error":
|
||||
error_msg = current_status.pop("error", "未知错误")
|
||||
return schemas.Response(success=False, message=error_msg, data=current_status)
|
||||
return schemas.Response(success=True, data=current_status)
|
||||
|
||||
# 获取当前状态(会检测请求是否变化)
|
||||
status_data = recommend_chain.get_status(filtered_indices, len(results))
|
||||
|
||||
# 如果功能未启用,直接返回禁用状态
|
||||
if status_data.get("status") == "disabled":
|
||||
return schemas.Response(success=True, data=status_data)
|
||||
|
||||
# 如果是空闲状态,启动新任务
|
||||
if status_data["status"] == "idle":
|
||||
recommend_chain.start_recommend_task(filtered_indices, len(results), results)
|
||||
# 立即返回运行中状态
|
||||
return schemas.Response(success=True, data={
|
||||
"status": "running"
|
||||
})
|
||||
|
||||
# 如果有错误,将错误信息放到message中
|
||||
if status_data.get("status") == "error":
|
||||
error_msg = status_data.pop("error", "未知错误")
|
||||
return schemas.Response(success=False, message=error_msg, data=status_data)
|
||||
|
||||
# 返回当前状态
|
||||
return schemas.Response(success=True, data=status_data)
|
||||
|
||||
@@ -130,18 +130,40 @@ async def cache_img(
|
||||
def get_global_setting(token: str):
|
||||
"""
|
||||
查询非敏感系统设置(默认鉴权)
|
||||
仅包含登录前UI初始化必需的字段
|
||||
"""
|
||||
if token != "moviepilot":
|
||||
raise HTTPException(status_code=403, detail="Forbidden")
|
||||
|
||||
# 白名单模式,仅包含前端业务逻辑必需的字段
|
||||
# 白名单模式,仅包含登录前UI初始化必需的字段
|
||||
info = settings.model_dump(
|
||||
include={
|
||||
"TMDB_IMAGE_DOMAIN",
|
||||
"GLOBAL_IMAGE_CACHE",
|
||||
"ADVANCED_MODE",
|
||||
}
|
||||
)
|
||||
# 追加版本信息(用于版本检查)
|
||||
info.update({
|
||||
"FRONTEND_VERSION": SystemChain.get_frontend_version(),
|
||||
"BACKEND_VERSION": APP_VERSION
|
||||
})
|
||||
return schemas.Response(success=True,
|
||||
data=info)
|
||||
|
||||
|
||||
@router.get("/global/user", summary="查询用户相关系统设置", response_model=schemas.Response)
|
||||
async def get_user_global_setting(_: User = Depends(get_current_active_user_async)):
|
||||
"""
|
||||
查询用户相关系统设置(登录后获取)
|
||||
包含业务功能相关的配置和用户权限信息
|
||||
"""
|
||||
# 业务功能相关的配置字段
|
||||
info = settings.model_dump(
|
||||
include={
|
||||
"RECOGNIZE_SOURCE",
|
||||
"SEARCH_SOURCE"
|
||||
"SEARCH_SOURCE",
|
||||
"AI_RECOMMEND_ENABLED"
|
||||
}
|
||||
)
|
||||
# 追加用户唯一ID和订阅分享管理权限
|
||||
@@ -150,8 +172,6 @@ def get_global_setting(token: str):
|
||||
"USER_UNIQUE_ID": SubscribeHelper().get_user_uuid(),
|
||||
"SUBSCRIBE_SHARE_MANAGE": share_admin,
|
||||
"WORKFLOW_SHARE_MANAGE": share_admin,
|
||||
"FRONTEND_VERSION": SystemChain.get_frontend_version(),
|
||||
"BACKEND_VERSION": APP_VERSION
|
||||
})
|
||||
return schemas.Response(success=True,
|
||||
data=info)
|
||||
|
||||
310
app/chain/ai_recommend.py
Normal file
310
app/chain/ai_recommend.py
Normal file
@@ -0,0 +1,310 @@
|
||||
import re
|
||||
from typing import List, Optional, Dict, Any
|
||||
import asyncio
|
||||
import hashlib
|
||||
import json
|
||||
|
||||
from app.chain import ChainBase
|
||||
from app.core.config import settings
|
||||
from app.log import logger
|
||||
from app.utils.common import log_execution_time
|
||||
from app.utils.singleton import Singleton
|
||||
from app.utils.string import StringUtils
|
||||
|
||||
|
||||
class AIRecommendChain(ChainBase, metaclass=Singleton):
|
||||
"""
|
||||
AI推荐处理链,单例运行
|
||||
用于基于搜索结果的AI智能推荐
|
||||
"""
|
||||
|
||||
# 缓存文件名
|
||||
__ai_indices_cache_file = "__ai_recommend_indices__"
|
||||
|
||||
# AI推荐状态
|
||||
_ai_recommend_running = False
|
||||
_ai_recommend_task: Optional[asyncio.Task] = None
|
||||
_current_request_hash: Optional[str] = None # 当前请求的哈希值
|
||||
_ai_recommend_result: Optional[List[int]] = None # AI推荐索引缓存(索引列表)
|
||||
_ai_recommend_error: Optional[str] = None # AI推荐错误信息
|
||||
|
||||
@staticmethod
|
||||
def _calculate_request_hash(
|
||||
filtered_indices: Optional[List[int]], search_results_count: int
|
||||
) -> str:
|
||||
"""
|
||||
计算请求的哈希值,用于判断请求是否变化
|
||||
"""
|
||||
request_data = {
|
||||
"filtered_indices": filtered_indices or [],
|
||||
"search_results_count": search_results_count,
|
||||
}
|
||||
return hashlib.md5(
|
||||
json.dumps(request_data, sort_keys=True).encode()
|
||||
).hexdigest()
|
||||
|
||||
def _build_status(self) -> Dict[str, Any]:
|
||||
"""
|
||||
构建AI推荐状态字典
|
||||
:return: 状态字典
|
||||
"""
|
||||
if not settings.AI_RECOMMEND_ENABLED:
|
||||
return {"status": "disabled"}
|
||||
|
||||
if self._ai_recommend_running:
|
||||
return {"status": "running"}
|
||||
|
||||
# 尝试从数据库加载缓存
|
||||
if self._ai_recommend_result is None:
|
||||
cached_indices = self.load_cache(self.__ai_indices_cache_file)
|
||||
if cached_indices is not None:
|
||||
self._ai_recommend_result = cached_indices
|
||||
|
||||
# 只要有结果,始终返回completed状态和数据
|
||||
if self._ai_recommend_result is not None:
|
||||
return {"status": "completed", "results": self._ai_recommend_result}
|
||||
|
||||
if self._ai_recommend_error is not None:
|
||||
return {"status": "error", "error": self._ai_recommend_error}
|
||||
|
||||
return {"status": "idle"}
|
||||
|
||||
def get_current_status_only(self) -> Dict[str, Any]:
|
||||
"""
|
||||
获取当前状态(不校验hash,用于check_only模式)
|
||||
"""
|
||||
return self._build_status()
|
||||
|
||||
def get_status(
|
||||
self, filtered_indices: Optional[List[int]], search_results_count: int
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
获取AI推荐状态并检查请求是否变化(用于首次请求或force模式)
|
||||
如果请求变化(筛选条件变化),返回idle状态
|
||||
"""
|
||||
# 计算当前请求的hash
|
||||
request_hash = self._calculate_request_hash(
|
||||
filtered_indices, search_results_count
|
||||
)
|
||||
|
||||
# 检查请求是否变化
|
||||
is_same_request = request_hash == self._current_request_hash
|
||||
|
||||
# 如果请求变化了(筛选条件改变),返回idle状态
|
||||
if not is_same_request:
|
||||
return (
|
||||
{"status": "idle"}
|
||||
if settings.AI_RECOMMEND_ENABLED
|
||||
else {"status": "disabled"}
|
||||
)
|
||||
|
||||
# 请求未变化,返回当前实际状态
|
||||
return self._build_status()
|
||||
|
||||
@log_execution_time(logger=logger)
|
||||
async def async_ai_recommend(self, items: List[str], preference: str = None) -> str:
|
||||
"""
|
||||
AI推荐
|
||||
:param items: 候选资源列表(JSON字符串格式)
|
||||
:param preference: 用户偏好(可选)
|
||||
:return: AI返回的推荐结果
|
||||
"""
|
||||
# 设置运行状态
|
||||
self._ai_recommend_running = True
|
||||
try:
|
||||
# 导入LLMHelper
|
||||
from app.helper.llm import LLMHelper
|
||||
|
||||
# 获取LLM实例
|
||||
llm = LLMHelper.get_llm()
|
||||
|
||||
# 构建提示词
|
||||
user_preference = (
|
||||
preference
|
||||
or settings.AI_RECOMMEND_USER_PREFERENCE
|
||||
or "Prefer high-quality resources with more seeders"
|
||||
)
|
||||
|
||||
# 添加指令
|
||||
instruction = """
|
||||
Task: Select the best matching items from the list based on user preferences.
|
||||
|
||||
Each item contains:
|
||||
- index: Item number
|
||||
- title: Full torrent title
|
||||
- size: File size
|
||||
- seeders: Number of seeders
|
||||
|
||||
Output Format: Return ONLY a JSON array of "index" numbers (e.g., [0, 3, 1]). Do NOT include any explanations or other text.
|
||||
"""
|
||||
message = (
|
||||
f"User Preference: {user_preference}\n{instruction}\nCandidate Resources:\n"
|
||||
+ "\n".join(items)
|
||||
)
|
||||
|
||||
# 调用LLM
|
||||
response = await llm.ainvoke(message)
|
||||
return response.content
|
||||
|
||||
except ValueError as e:
|
||||
logger.error(f"AI推荐配置错误: {e}")
|
||||
raise
|
||||
except Exception as e:
|
||||
raise
|
||||
finally:
|
||||
# 清除运行状态
|
||||
self._ai_recommend_running = False
|
||||
self._ai_recommend_task = None
|
||||
|
||||
def is_ai_recommend_running(self) -> bool:
|
||||
"""
|
||||
检查AI推荐是否正在运行
|
||||
"""
|
||||
return self._ai_recommend_running
|
||||
|
||||
def cancel_ai_recommend(self):
|
||||
"""
|
||||
取消正在运行的AI推荐任务
|
||||
"""
|
||||
if self._ai_recommend_task and not self._ai_recommend_task.done():
|
||||
self._ai_recommend_task.cancel()
|
||||
self._ai_recommend_running = False
|
||||
self._ai_recommend_task = None
|
||||
self._current_request_hash = None
|
||||
self._ai_recommend_result = None
|
||||
self._ai_recommend_error = None
|
||||
self.remove_cache(self.__ai_indices_cache_file)
|
||||
|
||||
def start_recommend_task(
|
||||
self,
|
||||
filtered_indices: Optional[List[int]],
|
||||
search_results_count: int,
|
||||
results: List[Any],
|
||||
) -> None:
|
||||
"""
|
||||
启动AI推荐任务
|
||||
:param filtered_indices: 筛选后的索引列表
|
||||
:param search_results_count: 搜索结果总数
|
||||
:param results: 搜索结果列表
|
||||
"""
|
||||
# 计算新请求的哈希值
|
||||
new_request_hash = self._calculate_request_hash(
|
||||
filtered_indices, search_results_count
|
||||
)
|
||||
|
||||
# 如果请求变化了,取消旧任务
|
||||
if new_request_hash != self._current_request_hash:
|
||||
self.cancel_ai_recommend()
|
||||
|
||||
# 更新请求哈希值
|
||||
self._current_request_hash = new_request_hash
|
||||
|
||||
# 重置状态
|
||||
self._ai_recommend_result = None
|
||||
self._ai_recommend_error = None
|
||||
|
||||
# 启动新任务
|
||||
async def run_recommend():
|
||||
# 获取当前任务对象,用于在finally中比对
|
||||
current_task = asyncio.current_task()
|
||||
try:
|
||||
self._ai_recommend_running = True
|
||||
|
||||
# 准备数据
|
||||
items = []
|
||||
valid_indices = []
|
||||
max_items = settings.AI_RECOMMEND_MAX_ITEMS or 50
|
||||
|
||||
# 如果提供了筛选索引,先筛选结果;否则使用所有结果
|
||||
if filtered_indices is not None and len(filtered_indices) > 0:
|
||||
results_to_process = [
|
||||
results[i]
|
||||
for i in filtered_indices
|
||||
if 0 <= i < len(results)
|
||||
]
|
||||
else:
|
||||
results_to_process = results
|
||||
|
||||
for i, torrent in enumerate(results_to_process):
|
||||
if len(items) >= max_items:
|
||||
break
|
||||
|
||||
if not torrent.torrent_info:
|
||||
continue
|
||||
|
||||
valid_indices.append(i)
|
||||
|
||||
item_info = {
|
||||
"index": i,
|
||||
"title": torrent.torrent_info.title or "未知",
|
||||
"size": (
|
||||
StringUtils.format_size(torrent.torrent_info.size)
|
||||
if torrent.torrent_info.size
|
||||
else "0 B"
|
||||
),
|
||||
"seeders": torrent.torrent_info.seeders or 0,
|
||||
}
|
||||
|
||||
items.append(json.dumps(item_info, ensure_ascii=False))
|
||||
|
||||
if not items:
|
||||
self._ai_recommend_error = "没有可用于AI推荐的资源"
|
||||
return
|
||||
|
||||
# 调用AI推荐
|
||||
ai_response = await self.async_ai_recommend(items)
|
||||
|
||||
# 解析AI返回的索引
|
||||
try:
|
||||
# 使用正则提取JSON数组(非贪婪模式,避免匹配多个数组)
|
||||
json_match = re.search(r'\[.*?\]', ai_response, re.DOTALL)
|
||||
if not json_match:
|
||||
raise ValueError(ai_response)
|
||||
|
||||
ai_indices = json.loads(json_match.group())
|
||||
if not isinstance(ai_indices, list):
|
||||
raise ValueError(f"AI返回格式错误: {ai_response}")
|
||||
|
||||
# 映射回原始索引
|
||||
if filtered_indices:
|
||||
original_indices = [
|
||||
filtered_indices[valid_indices[i]]
|
||||
for i in ai_indices
|
||||
if i < len(valid_indices)
|
||||
and 0 <= filtered_indices[valid_indices[i]] < len(results)
|
||||
]
|
||||
else:
|
||||
original_indices = [
|
||||
valid_indices[i]
|
||||
for i in ai_indices
|
||||
if i < len(valid_indices)
|
||||
and 0 <= valid_indices[i] < len(results)
|
||||
]
|
||||
|
||||
# 只返回索引列表,不返回完整数据
|
||||
self._ai_recommend_result = original_indices
|
||||
|
||||
# 保存到数据库
|
||||
self.save_cache(original_indices, self.__ai_indices_cache_file)
|
||||
logger.info(f"AI推荐完成: {len(original_indices)}项")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"解析AI返回结果失败: {e}, 原始响应: {ai_response}"
|
||||
)
|
||||
self._ai_recommend_error = str(e)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.info("AI推荐任务被取消")
|
||||
except Exception as e:
|
||||
logger.error(f"AI推荐任务失败: {e}")
|
||||
self._ai_recommend_error = str(e)
|
||||
finally:
|
||||
# 只有当 self._ai_recommend_task 仍然是当前任务时,才清理状态
|
||||
# 如果任务被取消并启动了新任务,self._ai_recommend_task 已经指向新任务,不应重置
|
||||
if self._ai_recommend_task == current_task:
|
||||
self._ai_recommend_running = False
|
||||
self._ai_recommend_task = None
|
||||
|
||||
# 创建并启动任务
|
||||
self._ai_recommend_task = asyncio.create_task(run_recommend())
|
||||
@@ -29,6 +29,7 @@ class SearchChain(ChainBase):
|
||||
"""
|
||||
|
||||
__result_temp_file = "__search_result__"
|
||||
__ai_result_temp_file = "__ai_search_result__"
|
||||
|
||||
def search_by_id(self, tmdbid: Optional[int] = None, doubanid: Optional[str] = None,
|
||||
mtype: MediaType = None, area: Optional[str] = "title", season: Optional[int] = None,
|
||||
@@ -98,6 +99,18 @@ class SearchChain(ChainBase):
|
||||
"""
|
||||
return await self.async_load_cache(self.__result_temp_file)
|
||||
|
||||
async def async_last_ai_results(self) -> Optional[List[Context]]:
|
||||
"""
|
||||
异步获取上次AI推荐结果
|
||||
"""
|
||||
return await self.async_load_cache(self.__ai_result_temp_file)
|
||||
|
||||
async def async_save_ai_results(self, results: List[Context]):
|
||||
"""
|
||||
异步保存AI推荐结果
|
||||
"""
|
||||
await self.async_save_cache(results, self.__ai_result_temp_file)
|
||||
|
||||
async def async_search_by_id(self, tmdbid: Optional[int] = None, doubanid: Optional[str] = None,
|
||||
mtype: MediaType = None, area: Optional[str] = "title", season: Optional[int] = None,
|
||||
sites: List[int] = None, cache_local: bool = False) -> List[Context]:
|
||||
|
||||
@@ -489,20 +489,18 @@ class SiteChain(ChainBase):
|
||||
logger.warn(f"站点 {domain} 索引器不存在!")
|
||||
return
|
||||
# 查询站点图标
|
||||
site_icon = siteoper.get_icon_by_domain(domain)
|
||||
if not site_icon or not site_icon.base64:
|
||||
logger.info(f"开始缓存站点 {indexer.get('name')} 图标 ...")
|
||||
icon_url, icon_base64 = self.__parse_favicon(url=indexer.get("domain"),
|
||||
cookie=cookie,
|
||||
ua=settings.USER_AGENT)
|
||||
if icon_url:
|
||||
siteoper.update_icon(name=indexer.get("name"),
|
||||
domain=domain,
|
||||
icon_url=icon_url,
|
||||
icon_base64=icon_base64)
|
||||
logger.info(f"缓存站点 {indexer.get('name')} 图标成功")
|
||||
else:
|
||||
logger.warn(f"缓存站点 {indexer.get('name')} 图标失败")
|
||||
logger.info(f"开始缓存站点 {indexer.get('name')} 图标 ...")
|
||||
icon_url, icon_base64 = self.__parse_favicon(url=indexer.get("domain"),
|
||||
cookie=cookie,
|
||||
ua=settings.USER_AGENT)
|
||||
if icon_url:
|
||||
siteoper.update_icon(name=indexer.get("name"),
|
||||
domain=domain,
|
||||
icon_url=icon_url,
|
||||
icon_base64=icon_base64)
|
||||
logger.info(f"缓存站点 {indexer.get('name')} 图标成功")
|
||||
else:
|
||||
logger.warn(f"缓存站点 {indexer.get('name')} 图标失败")
|
||||
|
||||
@eventmanager.register(EventType.SiteUpdated)
|
||||
def clear_site_data(self, event: Event):
|
||||
|
||||
@@ -439,6 +439,12 @@ class ConfigModel(BaseModel):
|
||||
LLM_MEMORY_RETENTION_DAYS: int = 1
|
||||
# Redis记忆保留天数(如果使用Redis)
|
||||
LLM_REDIS_MEMORY_RETENTION_DAYS: int = 7
|
||||
# 是否启用AI推荐
|
||||
AI_RECOMMEND_ENABLED: bool = False
|
||||
# AI推荐用户偏好
|
||||
AI_RECOMMEND_USER_PREFERENCE: str = ""
|
||||
# AI推荐条目数量限制
|
||||
AI_RECOMMEND_MAX_ITEMS: int = 50
|
||||
|
||||
|
||||
class Settings(BaseSettings, ConfigModel, LogConfigModel):
|
||||
|
||||
@@ -1,12 +1,76 @@
|
||||
"""LLM模型相关辅助功能"""
|
||||
from typing import List
|
||||
from typing import List, Optional
|
||||
|
||||
from app.core.config import settings
|
||||
from app.log import logger
|
||||
|
||||
|
||||
class LLMHelper:
|
||||
"""LLM模型相关辅助功能"""
|
||||
|
||||
@staticmethod
|
||||
def get_llm(streaming: bool = False, callbacks: Optional[list] = None):
|
||||
"""
|
||||
获取LLM实例
|
||||
:param streaming: 是否启用流式输出
|
||||
:param callbacks: 回调处理器列表
|
||||
:return: LLM实例
|
||||
"""
|
||||
provider = settings.LLM_PROVIDER.lower()
|
||||
api_key = settings.LLM_API_KEY
|
||||
|
||||
if not api_key:
|
||||
raise ValueError("未配置LLM API Key")
|
||||
|
||||
if provider == "google":
|
||||
if settings.PROXY_HOST:
|
||||
from langchain_openai import ChatOpenAI
|
||||
return ChatOpenAI(
|
||||
model=settings.LLM_MODEL,
|
||||
api_key=api_key,
|
||||
max_retries=3,
|
||||
base_url="https://generativelanguage.googleapis.com/v1beta/openai",
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=streaming,
|
||||
callbacks=callbacks,
|
||||
stream_usage=True,
|
||||
openai_proxy=settings.PROXY_HOST
|
||||
)
|
||||
else:
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
return ChatGoogleGenerativeAI(
|
||||
model=settings.LLM_MODEL,
|
||||
google_api_key=api_key,
|
||||
max_retries=3,
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=streaming,
|
||||
callbacks=callbacks
|
||||
)
|
||||
elif provider == "deepseek":
|
||||
from langchain_deepseek import ChatDeepSeek
|
||||
return ChatDeepSeek(
|
||||
model=settings.LLM_MODEL,
|
||||
api_key=api_key,
|
||||
max_retries=3,
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=streaming,
|
||||
callbacks=callbacks,
|
||||
stream_usage=True
|
||||
)
|
||||
else:
|
||||
from langchain_openai import ChatOpenAI
|
||||
return ChatOpenAI(
|
||||
model=settings.LLM_MODEL,
|
||||
api_key=api_key,
|
||||
max_retries=3,
|
||||
base_url=settings.LLM_BASE_URL,
|
||||
temperature=settings.LLM_TEMPERATURE,
|
||||
streaming=streaming,
|
||||
callbacks=callbacks,
|
||||
stream_usage=True,
|
||||
openai_proxy=settings.PROXY_HOST
|
||||
)
|
||||
|
||||
def get_models(self, provider: str, api_key: str, base_url: str = None) -> List[str]:
|
||||
"""获取模型列表"""
|
||||
logger.info(f"获取 {provider} 模型列表...")
|
||||
|
||||
@@ -242,6 +242,27 @@ class StringUtils:
|
||||
else:
|
||||
return size + "B"
|
||||
|
||||
@staticmethod
|
||||
def format_size(size_bytes: int) -> str:
|
||||
"""
|
||||
将字节转换为人类可读格式
|
||||
"""
|
||||
if not size_bytes or size_bytes == 0:
|
||||
return "0 B"
|
||||
|
||||
units = ["B", "KB", "MB", "GB", "TB", "PB"]
|
||||
size = float(size_bytes)
|
||||
unit_index = 0
|
||||
|
||||
while size >= 1024 and unit_index < len(units) - 1:
|
||||
size /= 1024
|
||||
unit_index += 1
|
||||
|
||||
# 保留两位小数
|
||||
if unit_index == 0:
|
||||
return f"{int(size)} {units[unit_index]}"
|
||||
return f"{size:.2f} {units[unit_index]}"
|
||||
|
||||
@staticmethod
|
||||
def url_equal(url1: str, url2: str) -> bool:
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user