1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-08 13:05:36 +08:00

更新有理积分部分

This commit is contained in:
Didnelpsun
2021-06-07 00:00:24 +08:00
parent 4ae2e89d97
commit 0a283cfcf4
6 changed files with 209 additions and 5 deletions

View File

@@ -68,11 +68,11 @@
将复杂的式子转换为简单的一个因式放到$\textrm{d}$后面看作一个整体,然后利用基本积分公式计算。
\textbf{例题:}$\displaystyle{\int\dfrac{\textrm{d}x}{x\ln x\ln\ln x}}$\medskip
\textbf{例题:}$\displaystyle{\int\dfrac{\textrm{d}x}{x\ln x\ln\ln x}}$\medskip
$=\displaystyle{\int\dfrac{\textrm{d}(\ln x)}{\ln x\ln\ln x}}=\displaystyle{\int\dfrac{\textrm{d}(\ln\ln x)}{\ln\ln x}}=\ln\vert\ln\ln x\vert+C$\medskip
\textbf{例题:}$\displaystyle{\int\dfrac{10^{2\arccos x}}{\sqrt{1-x^2}}\,\textrm{d}x}$
\textbf{例题:}$\displaystyle{\int\dfrac{10^{2\arccos x}}{\sqrt{1-x^2}}\,\textrm{d}x}$
$=-\displaystyle{\int10^{2\arccos x}\,\textrm{d}(\arccos x)}=-\dfrac{1}{2}\displaystyle{\int10^{2\arccos x}\,\textrm{d}(2\arccos x)}=-\dfrac{10^{2\arccos x}}{2\ln10}+C$
@@ -80,7 +80,7 @@ $=-\displaystyle{\int10^{2\arccos x}\,\textrm{d}(\arccos x)}=-\dfrac{1}{2}\displ
对于两个三角函数的乘积可以使用积化和差简单计算。
\textbf{例题:}$\displaystyle{\int\sin2x\cos3x\,\textrm{d}x}$
\textbf{例题:}$\displaystyle{\int\sin2x\cos3x\,\textrm{d}x}$
$=\displaystyle{\int\cos3x\sin2x\,\textrm{d}x=\dfrac{1}{2}\int(\sin5x-\sin x)\,\textrm{d}x}$
@@ -88,12 +88,62 @@ $=\dfrac{1}{2}\int\sin5x\,\textrm{d}x-\dfrac{1}{2}\int\sin x\,\textrm{d}x=-\dfra
\paragraph{三角拆分} \leavevmode \medskip
主要用于$\sec^2-1=\tan^2x$,当出现$\tan^2$$\tan^3$等与$\sec x$在一起作为乘积时可以考虑拆分。
主要用于$\sec^2-1=\tan^2x$,当出现$\tan^2$$\tan^3$等与$\sec x$在一起作为乘积时可以考虑拆分换元
\textbf{例题:}$\displaystyle{\int\tan^3x\sec x\,\textrm{d}x}$
$=\displaystyle{\int(\sec^2x-1)}\tan x\sec x\,\textrm{d}x=\displaystyle{\int(\sec^2x-1)}\,\textrm{d}(\sec x)=\dfrac{1}{3}\sec^3x-\sec x+C$
需要利用到有理积分的高阶多项式分配与低阶多项式因式分解。
\paragraph{有理换元} \leavevmode \medskip
书上这个类型属于有理函数部分,我这里移动到第一类换元中。即将无理因式设为一个变量,从而提高式子的阶数,消除无理式变为有理式。
\textbf{例题:}$\displaystyle{\int\dfrac{\textrm{d}x}{1+\sqrt[3]{x+1}}}$
$u=\sqrt[3]{x+1}$,从而$x=u^3-1$$\textrm{d}x=3u^2\,\textrm{d}u$
$=\displaystyle{\int\dfrac{3u^2}{1+u}\textrm{d}u=\int\dfrac{3u^2+3u-3u-3+3}{1+u}\textrm{d}u=\int\left(3u-3+\dfrac{3}{1+u}\right)\textrm{d}u}$
$=\dfrac{3}{2}u^2-3u+3\ln\vert1+u\vert+C=\dfrac{3}{2}\sqrt[3]{(x+1)^2}-3\sqrt[3]{x+1}+3\ln\vert1+\sqrt[3]{x+1}\vert+C$
\textbf{例题:}$\displaystyle{\int\sqrt{\dfrac{1-x}{1+x}}\dfrac{\textrm{d}x}{x}}$\medskip
$u=\sqrt{\dfrac{1-x}{1+x}}$$x=\dfrac{1-u^2}{1+u^2}$$\textrm{d}x=\textrm{d}\left(\dfrac{1-u^2}{1+u^2}\right)=\dfrac{-2u(1+u^2)-2u(1-u^2)}{(1+u^2)^2}$
$=\displaystyle{\int u\cdot\dfrac{1+u^2}{1-u^2}\cdot\dfrac{-4u}{(1+u^2)^2}\textrm{d}u=\int\dfrac{-4u^2}{(1-u)(1+u)(1+u^2)}\textrm{d}u}$
$\dfrac{A}{1-u}+\dfrac{B}{1+u}+\dfrac{Cu+D}{1+u^2}=\dfrac{-4u^2}{(1-u)(1+u)(1+u^2)}$
通分:$A(1+u^2+u+u^3)+B(1+u^2-u-u^3)+(Cu-Cu^3+D-Du^2)$
$=(A-B-C)u^3+(A+B-D)u^2+(A-B+C)u+(A+B+D)=-4u^2$
$\therefore A-B-C=0$$A+B-D=-4$$A-B+C=0$$A+B+D=0$
$\therefore A=B=-1$$C=0$$D=2$
原式$=\displaystyle{\int\left(\dfrac{2}{1+u^2}-\dfrac{1}{1-u}-\dfrac{1}{1+u}\right)\textrm{d}u}$
$=2\arctan u+\ln\vert1-u\vert-\ln\vert1+u\vert+C$
$=2\arctan\sqrt{\dfrac{1-x}{1+x}}+\ln\left\vert\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\vert+C$
\paragraph{万能公式} \leavevmode \medskip
同样属于有理积分的内容,但是本质还是属于三角函数的部分。
$u=\tan\dfrac{x}{2}$$\sin x=\dfrac{2u}{1+u^2}$$\cos x=\dfrac{1-u^2}{1+u^2}$$\textrm{d}x=\dfrac{2}{1+u^2}\textrm{d}u$
\textbf{例题:}$\displaystyle{\int\dfrac{\textrm{d}x}{3+\cos x}}$
$u=\tan\dfrac{x}{2}$,从而$\cos x=\dfrac{1-u^2}{1+u^2}$
$=\displaystyle{\int\dfrac{1}{3+\dfrac{1-u^2}{1+u^2}}\cdot\dfrac{2}{1+u^2}\textrm{d}u=\dfrac{1}{2+u^2}\textrm{d}u=\dfrac{1}{\sqrt{2}}\arctan\dfrac{u}{\sqrt{2}}+C}$
$=\dfrac{1}{\sqrt{2}}\arctan\dfrac{\tan\dfrac{x}{2}}{\sqrt{2}}+C$
\subsubsection{第二类换元}
使用换元法做了换元之后是要带回式子中的,也就是说要保证反函数的存在才能代入有意义。为了保证反函数的存在,因此要保证原函数的单调性,所以要有一个规定的范围来使原函数保证单调。
@@ -290,9 +340,35 @@ $=\displaystyle{\int\dfrac{x^3+9x-9x}{x^2+9}\,\textrm{d}x=\int\dfrac{x^3+9x}{x^2
$\displaystyle{=\int x\,\textrm{d}x-\dfrac{9}{2}\int\dfrac{\textrm{d}(x^2+9)}{x^2+9}}=\dfrac{x^2}{2}-\dfrac{9}{2}\ln(9+x^2)+C$
\subsubsection{低阶多项式分解}
当不定积分式子形如$\displaystyle{\int\dfrac{f(x)}{g(x)}\,\textrm{d}x}$,且$f(x)$$g(x)$都为与$x$相关的多项式,$f(x)$阶数低于$g(x)$,且$g(x)$可以因式分解为$g(x)=g_1(x)g_2(x)\cdots$时,先因式分解再进行运算。
因式分解时需要注意两点:一点是分解后的式子的分子最高阶要低于分母最高阶数一阶;二是当分母中出现某一因式有大于等于二的幂次时,需要把其分解为从一阶到其当前阶数的因式相加,但是阶数跟一阶因式的分子阶数一样,否则就缺一个不等式而求不出来。
虽然分母可以因式分解,但是整个式子不一定能因式分解,特别是某个因子的阶数高于一阶,所以若不能因式分解则可以考虑低阶多项式分配的方式。
\textbf{例题:}$\displaystyle{\int\dfrac{x^2+1}{(x+1)^2(x-1)}\textrm{d}x}$\medskip
$\dfrac{A}{x+1}+\dfrac{B}{(x+1)^2}+\dfrac{C}{x-1}=\dfrac{x^2+1}{(x+1)^2(x-1)}$\medskip
通分:$=A(x+1)(x-1)+B(x-1)+C(x+1)^2$
$=A(x^2-1)+B(x-1)+C(x^2+2x+1)$
$=(A+C)x^2+(B+2C)x+(C-A-B)=x^2+1$
从而$A+C=1$$B+2C=0$$C-A-B=1$
所以$A=C=\dfrac{1}{2}$$B=-1$,所以$\dfrac{x^2+1}{(x+1)^2(x-1)}=\dfrac{1}{2(x+1)}-\dfrac{1}{(x+1)^2}+\dfrac{1}{2(x-1)}$
$\therefore=\displaystyle{\int\left[\dfrac{1}{2(x+1)}-\dfrac{1}{(x+1)^2}+\dfrac{1}{2(x-1)}\right]\textrm{d}x}$ \medskip
$=\dfrac{1}{2}\ln\vert x-1\vert+\dfrac{1}{2}\ln\vert x+1\vert+\dfrac{1}{x+1}+C=\dfrac{1}{2}\ln\vert x^2-1\vert+\dfrac{1}{x+1}+C$
\subsubsection{低阶多项式分配}
当不定积分式子形如$\displaystyle{\int\dfrac{f(x)}{g(x)}\,\textrm{d}x}$,且$f(x)$$g(x)$都为与$x$相关的多项式,$f(x)$阶数低于$g(x)$,且$g(x)$不能因式分解为$g(x)=g_1(x)g_2(x)\cdots$时,则可以分式子:$\displaystyle{\int\dfrac{f(x)}{g(x)}\,\textrm{d}x=a_1\int\dfrac{\textrm{d}(f_1(x))}{g_1(x)}+a_2\int\dfrac{\textrm{d}(f_2(x))}{g_2(x)}}+\cdots$,将积分式子组合成积分结果为分式的函数,如$\ln x$$\arcsin x$$\arctan x$等。
当不定积分式子形如$\displaystyle{\int\dfrac{f(x)}{g(x)}\,\textrm{d}x}$,且$f(x)$$g(x)$都为与$x$相关的多项式,$f(x)$阶数低于$g(x)$,且$g(x)$不能因式分解为$g(x)=g_1(x)g_2(x)\cdots$时,则可以分式子:$\displaystyle{\int\dfrac{f(x)}{g(x)}\,\textrm{d}x=a_1\int\dfrac{\textrm{d}(f_1(x))}{g_1(x)}+a_2\int\dfrac{\textrm{d}(f_2(x))}{g_2(x)}}+\cdots$,将积分式子组合成积分结果为分式的函数,如$\ln x$$\arcsin x$$\arctan x$等。
\textbf{例题:}$\displaystyle{\int\dfrac{x-1}{x^2+2x+3}\textrm{d}x}$
@@ -308,6 +384,70 @@ $-\displaystyle{\int\dfrac{1}{\left(\dfrac{x+1}{\sqrt{2}}\right)^2+1}\textrm{d}x
$=\dfrac{1}{2}\ln(x^2+2x+3)-\sqrt{2}\arctan\dfrac{x+1}{\sqrt{2}}+C$
\subsubsection{低阶多项式因式分解与分配}
有时候一个式子需要同时用到因式分解和分配两种方式。
\textbf{例题:}$\displaystyle{\int\dfrac{x^5+x^4-8}{x^3-x}\textrm{d}x}$
$=\displaystyle{\int\dfrac{x^5-x^3+x^4-x^2+x^3-x+x^2+x-8}{x^3-x}\textrm{d}x}$
$=\int x^2\,\textrm{d}x+\int x\,\textrm{d}x+\int\textrm{d}x+\displaystyle{\int\dfrac{x^x+x-8}{x^3-x}\textrm{d}x}=\dfrac{x^3}{3}+\dfrac{x^2}{2}+x+\displaystyle{\int\dfrac{x^2+x-8}{x^3-x}\textrm{d}x}$
$\dfrac{A}{x}+\dfrac{B}{x+1}+\dfrac{C}{x-1}=\dfrac{x^2+x-8}{x^3-x}$
$\therefore(A+B+C)x^2+(C-B)x-A=x^2+x-8$$A=8$$B=-4$$C=-3$
$=\dfrac{x^3}{3}+\dfrac{x^2}{2}+x+\displaystyle{\int\dfrac{8}{x}\textrm{d}x-\int\dfrac{4}{x+1}\textrm{d}x-\int\dfrac{3}{x-1}\textrm{d}x}$
$=\dfrac{x^3}{3}+\dfrac{x^2}{2}+x+8\ln\vert x\vert-4\ln\vert x+1\vert-3\ln\vert x-1\vert+C$
\subsubsection{有理积分与其他积分运算}
换元积分法可以与有理积分、分部积分共同使用。
\textbf{例题:}$\displaystyle{\int\dfrac{-x^2-2}{(x^2+x+1)^2}\textrm{d}x}$
首先根据因式分解:$\dfrac{-x^2-2}{(x^2+x+1)^2}=\dfrac{Ax+B}{x^2+x+1}+\dfrac{Cx+D}{(x^2+x+1)^2}$
$\therefore Ax^3+(A+B)x^2+(A+B+C)x+(B+D)=-x^2-2$
解得:$A=0$$B=D=-1$$C=1$
$=\displaystyle{\int\dfrac{x-1}{(x^2+x+1)^2}\textrm{d}x-\int\dfrac{1}{x^2+x+1}\textrm{d}x}$
$=\displaystyle{\dfrac{1}{2}\int\dfrac{\textrm{d}(x^2+x+1)}{(x^2+x+1)^2}-\dfrac{3}{2}\int\dfrac{1}{(x^2+x+1)^2}\textrm{d}x-\int\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\textrm{d}x}$
$=-\dfrac{1}{2(x^2+x+1)}\displaystyle{-\dfrac{3}{2}\int\dfrac{1}{(x^2+x+1)^2}\textrm{d}x}-\dfrac{2}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}$ \smallskip
$\because x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2$$\therefore$$u=x+\dfrac{1}{2}$$a=\dfrac{\sqrt{3}}{2}$
$\displaystyle{\int\dfrac{1}{(x^2+x+1)^2}\textrm{d}x=\int\dfrac{1}{(u^2+a^2)^2}\textrm{d}u=\int\dfrac{1}{\left(a^2\left(\left(\dfrac{u}{a}\right)^2+1\right)\right)^2}}$,使用第二类换元法(三角换元):$\dfrac{u}{a}=\tan t$$u=a\tan t$$\textrm{d}u=a\sec^2t\,\textrm{d}t$$t=\arctan\dfrac{u}{a}$
$\therefore=\displaystyle{\int\dfrac{a\sec^2t}{a^4\sec^4t}\textrm{d}t=\dfrac{1}{a^3}\int\dfrac{\textrm{d}t}{sec^2t}}=\dfrac{1}{a^3}\int\cos^2t\,\textrm{d}t=\dfrac{1}{a^3}\int(1+\cos2t)\,\textrm{d}t$
$=\dfrac{1}{a^3}\int\textrm{d}t+\dfrac{1}{2a^3}\int\cos2t\,\textrm{d}(2t)=\dfrac{t}{a^3}+\dfrac{\sin2t}{2a^3}=\dfrac{\arctan\dfrac{u}{a}}{a^3}+\dfrac{\sin t\cos t}{a^3}$
$\because\tan t=\dfrac{u}{a}$$\therefore\tan^2t=\dfrac{\sin^2t}{\cos^2t}=\dfrac{1-\cos^2t}{\cos2t}=\dfrac{\sin^2t}{1-\sin^2t}=\dfrac{u^2}{a^2}$
$\therefore\sin t=\dfrac{u}{\sqrt{a^2+u^2}}$$\cos t=\dfrac{a}{\sqrt{a^2+u^2}}$$\dfrac{\sin t\cos t}{a^3}=\dfrac{u}{a^2(a^2+u^2)}$
$\therefore$原式$=-\dfrac{1}{2(x^2+x+1)}-\dfrac{2}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}\displaystyle{-\dfrac{3}{2}\int\dfrac{1}{(x^2+x+1)^2}\textrm{d}x}$
$=-\dfrac{1}{2(x^2+x+1)}-\dfrac{2}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}-\dfrac{3}{2}\left(\dfrac{\arctan\dfrac{u}{a}}{a^3}+\dfrac{u}{a^2(a^2+u^2)}\right)+C$
$=-\dfrac{1}{2(x^2+x+1)}-\dfrac{2}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}$
$-\dfrac{3}{2}\left(\dfrac{\arctan\dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}}{\left(\dfrac{\sqrt{3}}{2}\right)^3}+\dfrac{x+\dfrac{1}{2}}{\left(\dfrac{\sqrt{3}}{2}\right)^2\left(\left(\dfrac{\sqrt{3}}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2\right)}\right)+C$
$=-\dfrac{1}{2(x^2+x+1)}-\dfrac{2}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}$
$-\dfrac{3}{2}\left(\dfrac{\arctan\dfrac{2x+1}{\sqrt{3}}}{\dfrac{3\sqrt{3}}{8}}+\dfrac{x+\dfrac{1}{2}}{\dfrac{3}{4}\left(x^2+x+1\right)}\right)+C$
$=-\dfrac{1}{2(x^2+x+1)}-\dfrac{2}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}-\dfrac{4}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}-\dfrac{2x+1}{x^2+x+1}+C$
$=-\dfrac{4x+3}{2(x^2+x+1)}-\dfrac{6}{\sqrt{3}}\arctan\dfrac{2x+1}{\sqrt{3}}+C$
\section{定积分}
\subsection{变限积分}

Binary file not shown.

View File

@@ -0,0 +1,32 @@
\documentclass[UTF8, 12pt]{ctexart}
% UTF8编码ctexart现实中文
\usepackage{color}
% 使用颜色
\usepackage{geometry}
\setcounter{tocdepth}{4}
\setcounter{secnumdepth}{4}
% 设置四级目录与标题
\geometry{papersize={21cm,29.7cm}}
% 默认大小为A4
\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm}
% 默认页边距为1英尺与1.25英尺
\usepackage{indentfirst}
\setlength{\parindent}{2.45em}
% 首行缩进2个中文字符
\usepackage{setspace}
\renewcommand{\baselinestretch}{1.5}
% 1.5倍行距
\author{Didnelpsun}
\title{行列式}
\date{}
\begin{document}
\maketitle
\pagestyle{empty}
\thispagestyle{empty}
\tableofcontents
\thispagestyle{empty}
\newpage
\pagestyle{plain}
\setcounter{page}{1}
\section{}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,32 @@
\documentclass[UTF8, 12pt]{ctexart}
% UTF8编码ctexart现实中文
\usepackage{color}
% 使用颜色
\usepackage{geometry}
\setcounter{tocdepth}{4}
\setcounter{secnumdepth}{4}
% 设置四级目录与标题
\geometry{papersize={21cm,29.7cm}}
% 默认大小为A4
\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm}
% 默认页边距为1英尺与1.25英尺
\usepackage{indentfirst}
\setlength{\parindent}{2.45em}
% 首行缩进2个中文字符
\usepackage{setspace}
\renewcommand{\baselinestretch}{1.5}
% 1.5倍行距
\author{Didnelpsun}
\title{矩阵}
\date{}
\begin{document}
\maketitle
\pagestyle{empty}
\thispagestyle{empty}
\tableofcontents
\thispagestyle{empty}
\newpage
\pagestyle{plain}
\setcounter{page}{1}
\section{}
\end{document}