1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-08 04:56:27 +08:00

第四讲更新

This commit is contained in:
Didnelpsun
2021-01-23 22:38:57 +08:00
parent 1ad690bfc5
commit 0bfdc4801d
4 changed files with 273 additions and 2 deletions

View File

@@ -29,9 +29,11 @@
% 圆圈序号
\author{Didnelpsun}
\title{考研数学准备}
\date{}
\begin{document}
\renewcommand\arraystretch{1.5}
% 表格长1.5倍
\renewcommand
\arraystretch{1.5}
% 表格高1.5倍
\maketitle
\thispagestyle{empty}
\tableofcontents

View File

@@ -26,6 +26,7 @@
% 圆圈序号
\author{Didnelpsun}
\title{数列与极限}
\date{}
\begin{document}
\maketitle
\thispagestyle{empty}

View File

@@ -31,6 +31,7 @@
% 有字的长箭头
\author{Didnelpsun}
\title{函数与极限}
\date{}
\begin{document}
\maketitle
\thispagestyle{empty}
@@ -463,6 +464,8 @@ $x\to 0$
还有$e^{\sin x}-e^x\sim\sin x-x\sim-\dfrac{1}{6}x^3$
其中$a\cdot x\ln x$$x\to 0$的极限必然为0。
\section{极限计算}
\subsection{未定式}

View File

@@ -23,11 +23,18 @@
\usepackage{setspace}
\renewcommand{\baselinestretch}{1.5}
% 1.5倍行距
\usepackage{pifont}
% 圆圈序号
\usepackage{tikz}
% 绘图
\usepackage{array}
% 设置表格行距
\author{Didnelpsun}
\title{一元函数微分学}
\date{}
\begin{document}
\renewcommand{\arraystretch}{1.5}
% 表格高1.5倍
\maketitle
\thispagestyle{empty}
\tableofcontents
@@ -265,14 +272,259 @@ $\therefore\dfrac{\rm{d}\arcsin x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\sin y}{\rm{d
$\therefore\dfrac{\rm{d}\arctan x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\tan y}{\rm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$
二阶反函数导数\textcolor{aqua}{\textbf{定理:}}
$
\begin{aligned}
f''(x) &=y''_{xx} \\
& =\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x} \\
& =\dfrac{\rm{d}^2y}{\rm{d}x^2} \\
& =\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\rm{d}x} \\
& =\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x} \\
& =-\dfrac{x_{yy}''}{(x_y')^2}\cdot\dfrac{1}{x_y'} \\
& =-\dfrac{x_{yy}''}{(x_y')^3}
\end{aligned}
$
其中$\rm{d}x\cdot\rm{d}x=(\rm{d}x)^2=\rm{d}x^2$称为微分的幂,而$\rm{d}(x^2)$叫幂的微分。
\textbf{例题10}$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\rm{d}t+1$,求$\varphi''(1)$
$\because y=f(x)$$\therefore x=\varphi(y)$$x_{yy}''=\varphi''(y)=-\dfrac{y_{xx}''}{(y_x')^3}=-\dfrac{f''(x)}{[f'(x)]^3}$
其中根据变限积分求导公式:$f'(x)=2e^{4x^2}$$f''(x)=2e^{4x^2}\cdot 8x=16xe^{4x^2}$
$y=1\Rightarrow x=\dfrac{1}{2}\Rightarrow\varphi''(1)=-\dfrac{f''\left(\dfrac{1}{2}\right)}{\left[f'\left(\dfrac{1}{2}\right)\right]^3}=-\dfrac{1}{e^2}$
\subsection{参数方程函数导数}
设函数$y=y(x)$由参数方程$\left\{
\begin{array}{l}
x=\varphi(t) \\
y=\psi(t)
\end{array}
\}\right.$确定,其中$t$为参数,且$\varphi(t)\psi(t)$对于$t$都可导,$\varphi(t)\neq 0$,则:
\bigskip
一阶导数:$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{\rm{d}y/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$
二阶导数:$\dfrac{\rm{d}^2y}{\rm{d}x^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{\rm{d}u/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{u'_t}{x'_t}$
\textbf{例题11}$y=y(x)$由方程$\left\{
\begin{array}{l}
x=\sin t \\
y=t\sin t+\cos t
\end{array}
\right.
$$t$为参数)确定,求$\dfrac{\rm{d}^2y}{\rm{d}x^2}\vert_{t=\frac{\pi}{4}}$
求参数方程的二阶导数首先就要求出其一阶导数:
$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$
$\therefore\dfrac{\rm{d}^2y}{\rm{d}x^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$
$\therefore \sqrt{2}$
\subsection{隐函数求导法}
设函数$y=y(x)$由方程$F(x,y)=0$确定的可导函数,则\ding{172}方程两边对自变量$x$求导,($y=y(x)$就是将$y$看作中间变量)得到一个关于$y'$的方程。\ding{173}解该方程就可以得出$y'$
\textbf{例题12}$y=y(x)$是由方程$\sin(xy)=\ln\dfrac{x+e}{y}+1$确定的隐函数,求$y'(0)$
两边求导:
$
\begin{aligned}
\sin(xy) &=\ln(x+e)-\ln(y)+1 \\
\cos(xy)(y+xy') &=\dfrac{1}{x+e}-\dfrac{y'}{y} \\
\because\text{0代入} & x=0, y=e^2 \\
e^2&=\dfrac{1}{e}-\dfrac{y'(0)}{e^2} \\
y'(0) & =e-e^4
\end{aligned}
$
\subsection{对数求导法}
对于多项相乘、相除、开方、乘方的式子,一般先取对数再求导,设$y=f(x)(f(x)>0)$,则\ding{172}等式两边取对数:$\ln y=\ln f(x)$\ding{173}两边对自变量$x$求导,得$\dfrac{1}{y}y'=[\ln f(x)]'\Rightarrow y'=y[\ln f(x)]'$
\textbf{例题13}$y=\sqrt[3]{\dfrac{(x+1)(2x-1)^2}{(4-3x)^5}}$的导数。
取对数:$\ln\vert y\vert=\dfrac{1}{3}[\ln\vert x+1\vert+2\ln\vert 2x-1\vert-5\ln\vert 4-3x\vert]$
$\because \ln\vert y\vert'=\ln y'$
两边对x求导
$\dfrac{y'}{y}=\dfrac{1}{3}\left(\dfrac{1}{x+1}+\dfrac{4}{2x-1}-\dfrac{5}{4-3x}\cdot(-3)\right)$
$\therefore y'=\dfrac{1}{3}\left(\dfrac{1}{x+1}+\dfrac{4}{2x-1}-\dfrac{5}{4-3x}\cdot(-3)\right)y$
\subsection{幂指函数求导法}
非常重要。
对于$u(x)^{v(x)}(u(x)>0,u(x)\neq 1)$除了对数求导法外还可以使用指数函数$u(x)^{v(x)}=e^{v(x)\ln u(x)}$,然后求导得到$[u(x)^{v(x)}]'=[e^{v(x)\ln u(x)}]'=u(x)^{v(x)}\left[v'(x)\ln u(x)+v(x)\cdot\dfrac{u'(x)}{u(x)}\right]$
\textbf{例题14}$y=x^x(x>0)$的导数。
$\because x^x=e^{x\ln x}$$\therefore (x^x)'=(e^{x\ln x})'=x^x\cdot(\ln x+1)$
\textbf{例题15}求解$y=x^{\frac{1}{x}}(x>0)$的整数最大值。
$\because y=x^{\frac{1}{x}}=e^{\frac{1}{x}\ln x}$
$\therefore y'=\left(x^{\frac{1}{x}}\right)=\left(e^{\frac{1}{x}\ln x}\right)'=x^{\frac{1}{x}}\cdot\dfrac{1-\ln x}{x^2}$
令导数结果为0因为$x^{\frac{1}{x}}$$x^2$$x>0$时都不为0所以只有一个驻点$x=e$
$0<x<e$$1-\ln x$大于0所以导数大于0函数在该区间增。相反$x>e$时函数在区间减。
研究驻点左侧情况,求对应的极限:$e^{\lim_{x\to 0^+}\frac{\ln x}{x}}=e^{-\infty}\to 0$
研究驻点右侧情况,求对应的极限:$e^{\lim_{x\to+\infty}\frac{\ln x}{x}}=e^0\to 1$
\begin{tikzpicture}[scale=0.5]
\draw[-latex](-0.5,0) -- (10,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,3) node[above]{$y$};
\draw[black, thick, domain=0.1:10] plot (\x,{pow(\x,pow(\x,-1))});
\filldraw[black] (8,2.5) node{$y=x^{\frac{1}{x}}$};
\filldraw[white, draw=black, line width=1pt] (0,0) circle (4pt);
\filldraw[black] (0,0) node[below]{$O$};
\filldraw[black] (e,1.5) circle (4pt);
\filldraw[black] (e,1.5) node[above]{$(e,\sqrt[e]{e})$};
\draw[black, densely dashed](e,1.5) -- (e,0) node[below]{$e$};
\draw[black, densely dashed](10,1.5) -- (0,1.5) node[left]{$\sqrt[e]{e})$};
\end{tikzpicture}
所以必然在$\sqrt{2}$$\sqrt[3]{3}$两点取得整数最大值,而全部六次方后$\sqrt{2}^6=8<\sqrt[3]{3}=9$,所以$\sqrt[3]{3}$为最大整数解。
\subsection{高阶导数}
即导数阶数在2以及以上的导数计算。
\subsubsection{归纳法}
即依次求导得出规律。
$(a^x)^n=a^x(\ln a)^{(n)}$,如$y=2^x$,则$y'=2^x\ln 2$$y''=2^x(\ln 2)^2\cdots$得到$y^{(n)}=2^x(\ln 2)^n,n\in N$
\textbf{例题16}$\sin x$$n$阶导数。
$\because \sin x'=\cos x$而不断求导会发现正负号会++--++--地变化而难以归纳为公式,所以需要另想办法。
使用诱导公式:
$
\begin{aligned}
y'& =\cos x=\sin(x+\dfrac{\pi}{2}) \\
y''& =\cos(x+\dfrac{\pi}{2})=\sin(x+\dfrac{\pi}{2}+\dfrac{\pi}{2}) \\
\cdots & \\
y^{(n)}& =\sin(x+\dfrac{\pi}{2}\cdot n)
\end{aligned}
$
\subsubsection{莱布尼茨公式}
$u=u(x)$$v=v(x)$$n$阶可导,则$(uv)^{(n)}=\sum_{k=0}^nC_n^ku^{(n-k)}v^{(k)}$
展开:$(uv)^{(n)}=C_n^0u^{(n)}v^{(0)}+C_n^1u^{(n-1)}v'+\cdots+C_n^nu^{(0)}v^{(n)}$
莱布尼兹公式里的系数与考研数学准备章节的因式分解公式的二次项公式的系数一致,可以使用杨辉三角形来记忆:
\begin{tikzpicture}[scale=0.9]
\node[black] at (0,0) {$C_0^0$};
\node[black] at (-1,-1) {$C_1^0$};
\node[black] at (0,-1) {$C_1^1$};
\node[black] at (-2,-2) {$C_2^0$};
\node[black] at (-1,-2) {$C_2^1$};
\node[black] at (-0,-2) {$C_2^2$};
\node[black] at (-3,-3) {$C_3^0$};
\node[black] at (-2,-3) {$C_3^1$};
\node[black] at (-1,-3) {$C_3^2$};
\node[black] at (-0,-3) {$C_3^3$};
\node[black] at (-4,-4) {$C_4^0$};
\node[black] at (-3,-4) {$C_4^1$};
\node[black] at (-2,-4) {$C_4^2$};
\node[black] at (-1,-4) {$C_4^3$};
\node[black] at (-0,-4) {$C_4^4$};
\end{tikzpicture}
\hspace{2.5em}
\begin{tikzpicture}[scale=0.9]
\node[black] (0) at (0,0) {1};
\node[black] (1) at (-1,-1) {1};
\node[black] (2) at (1,-1) {1};
\node[black] (3) at (-2,-2) {1};
\node[black] (4) at (0,-2) {2};
\node[black] (5) at (2,-2) {1};
\node[black] (6) at (-3,-3) {1};
\node[black] (7) at (-1,-3) {3};
\node[black] (8) at (1,-3) {3};
\node[black] (9) at (3,-3) {1};
\node[black] (10) at (-4,-4) {1};
\node[black] (11) at (-2,-4) {4};
\node[black] (12) at (0,-4) {6};
\node[black] (13) at (2,-4) {4};
\node[black] (14) at (4,-4) {1};
\draw[-,thick] (0) to (1);
\draw[-,thick] (0) to (2);
\draw[-,thick] (1) to (3);
\draw[-,thick] (1) to (4);
\draw[-,thick] (2) to (4);
\draw[-,thick] (2) to (5);
\draw[-,thick] (3) to (6);
\draw[-,thick] (3) to (7);
\draw[-,thick] (4) to (7);
\draw[-,thick] (4) to (8);
\draw[-,thick] (5) to (8);
\draw[-,thick] (5) to (9);
\draw[-,thick] (6) to (10);
\draw[-,thick] (6) to (11);
\draw[-,thick] (7) to (11);
\draw[-,thick] (7) to (12);
\draw[-,thick] (8) to (12);
\draw[-,thick] (8) to (13);
\draw[-,thick] (9) to (13);
\draw[-,thick] (9) to (14);
\end{tikzpicture}
\textbf{例题17}已知函数$y=e^x\cos x$,求$y^{(4)}$
根据莱布尼兹公式:
$
\begin{aligned}
& (e^x\cos x)^{(4)} \\
& =C_4^0e^x\cos x+C_4^1e^x(-\sin x)+C_4^2e^x(-\cos x)+C_4^3e^x(\sin x)+C_4^4e^x(\cos x) \\
& =e^x\cos x+4e^x(-\sin x)+6e^x(-\cos x)+4e^x\sin x+e^x\cos x \\
& =-4e^x\cos x
\end{aligned}
$
\subsubsection{泰勒公式}
先写出$y=f(x)$的泰勒公式或麦克劳林公式,再通过比较系数来获得$f^{(n)}(x_0)$
\begin{enumerate}
\item 任何一个无穷阶可导的函数(在收敛的情况下)都可以写为 \\
$y=f(x)=\sum_{n=0}^\infty\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$y=f(x)=\sum_{n=0}^\infty\dfrac{f^{(n)}(0)}{n!}x^n$
\item 给出的任意一个具体的无穷阶可导函数$y=f(x)$都可以通过已知的公式展开为幂级数。
\item 而函数的展开式具有唯一性,比较步骤一步骤二的公式的系数就可以获取倒$f^{(n)}(x_0)$$f^{(n)}(0)$
\end{enumerate}
\textbf{例题18}$y=x^3\sin x$,求$y^{(6)}(0)$
\ding{172}$y=\sum_{n=0}^\infty\dfrac{y^{(n)}(0)}{n!}x^n$
$\because$需要结果的导数阶数为6所以最后得到的次数为6就可以了。
\ding{173}$\therefore y=x^3\left(x-\dfrac{1}{6}x^3+\cdots\right)=x^4-\dfrac{1}{6}x^6+\cdots$(不要写$o(x^n)$,因为这里$x$并不是趋向0的
\ding{174}步骤一的抽象函数当$n=6$时为$\dfrac{y^{(6)}(0)}{6!}x^6$,它应该与步骤二得到的$x^4-\dfrac{1}{6}x^6+\cdots$的6阶项的系数相等。
$\therefore \dfrac{y^{(6)}(0)}{6!}=-\dfrac{1}{6}\Rightarrow y^{(6)}(0)=-5!=-120$
\subsection{变限积分求导公式}
必然会考。
@@ -280,4 +532,17 @@ $\therefore\dfrac{\rm{d}\arctan x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\tan y}{\rm{d
已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}x$$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$
\subsection{基本求导公式}
\begin{center}
\begin{tabular}{|c|c|}
\hline
原函数 & 导函数 \\ \hline
$C$ & $0$ \\ \hline
$n^x$ & $n^x\ln n$ \\ \hline
$\log_ax$ & $\dfrac{1}{x\ln a}$ \\ \hline
$\ln x(\ln\vert x\vert)$ & $\dfrac{1}{x}$ \\
\hline
\end{tabular}
\end{center}
\end{document}