1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-07 12:34:41 +08:00

第四讲更新

This commit is contained in:
Didnelpsun
2021-01-22 22:19:02 +08:00
parent a1d0c50af7
commit 1ad690bfc5
2 changed files with 121 additions and 6 deletions

View File

@@ -3,7 +3,6 @@
% 使用颜色
\definecolor{orange}{RGB}{255,127,0}
\definecolor{violet}{RGB}{192,0,255}
\definecolor{aqua}{RGB}{0,255,255}
\usepackage{geometry}
\setcounter{tocdepth}{5}
\setcounter{secnumdepth}{5}
@@ -28,6 +27,8 @@
% 超链接
\usepackage{tikz}
% 绘图
\usepackage{mathtools}
% 有字的长箭头
\author{Didnelpsun}
\title{函数与极限}
\begin{document}
@@ -542,7 +543,7 @@ $
& \lim_{x\to-\infty}x(\sqrt{x^2+100}+x) \\
& \lim_{x\to-\infty}x\dfrac{x^2+100-x^2}{\sqrt{x^100}-x} \\
& = \lim_{x\to-\infty}\dfrac{100x}{\sqrt{x^2+100}-x} \\
& \Rightarrow^{\text{}x=-t} \lim_{t\to+\infty}\dfrac{-100t}{\sqrt{t^2+100}+t} \\
& \xRightarrow{\text{}x=-t}\lim_{t\to+\infty}\dfrac{-100t}{\sqrt{t^2+100}+t} \\
& = \lim_{t\to+\infty}\dfrac{-100}{\sqrt{1+\dfrac{100}{t^2}}+1} \\
& = -50
\end{aligned}
@@ -558,7 +559,7 @@ $
\begin{aligned}
& \lim_{x\to 1^-}\ln x\ln(1-x) \\
& = \lim_{x\to 1^-}(x-1)\ln(1-x) \\
& \Rightarrow^{令t=1-x} =-\lim_{t\to 0^+}t\ln t \\
& \xRightarrow{令t=1-x} =-\lim_{t\to 0^+}t\ln t \\
& = -\lim_{t\to 0^+}\dfrac{\ln t}{\dfrac{1}{t}} \\
& = -\lim_{t\to 0^+}\dfrac{\dfrac{1}{t}}{-\dfrac{1}{t^2}} \\
& = \lim_{t\to 0^+}t \\
@@ -617,9 +618,9 @@ $\infty-\infty$型\textbf{例题11}求极限$\lim_{x\to+\infty}[x^2(e^{\frac{
$
\begin{aligned}
& \lim_{x\to+\infty}[x^2(e^{\frac{1}{x}}-1)-x] \\
& \Rightarrow^{\text{}x=\frac{1}{t}}\lim_{t\to 0^+}\left(\dfrac{e^t-1}{x^2}-\dfrac{1}{t}\right) \\
& \xRightarrow{\text{}x=\frac{1}{t}}\lim_{t\to 0^+}\left(\dfrac{e^t-1}{x^2}-\dfrac{1}{t}\right) \\
& \lim_{t\to 0^+}\dfrac{e^t-1-t}{t^2} \\
& \Rightarrow^{\text{泰勒展开}e^x}\lim_{t\to 0^+}\dfrac{\dfrac{1}{2}x^2}{x^2} \\
& \xRightarrow{\text{泰勒展开}e^x}\lim_{t\to 0^+}\dfrac{\dfrac{1}{2}x^2}{x^2} \\
& =\dfrac{1}{2}
\end{aligned}
$

View File

@@ -1,9 +1,10 @@
\documentclass[UTF8]{ctexart}
% UTF8编码ctexart现实中文
\usepackage{color}
\usepackage{xcolor}
% 使用颜色
\definecolor{orange}{RGB}{255,127,0}
\definecolor{violet}{RGB}{192,0,255}
\definecolor{aqua}{RGB}{0,255,255}
\usepackage{geometry}
\setcounter{tocdepth}{4}
\setcounter{secnumdepth}{4}
@@ -22,6 +23,8 @@
\usepackage{setspace}
\renewcommand{\baselinestretch}{1.5}
% 1.5倍行距
\usepackage{tikz}
% 绘图
\author{Didnelpsun}
\title{一元函数微分学}
\begin{document}
@@ -151,11 +154,117 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{
由此,可导必可微,可微必可导。
\begin{tikzpicture}[scale=0.9]
\draw[-latex](-0.5,0) -- (4.5,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,4) node[above]{$y$};
\draw[black, thick, domain=1.5:3] plot (\x,{pow(\x-1,2)/2+1}) node[above]{$y(x)$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](1.5,1.125) -- (1.5,0) node[below]{$x_0$};
\draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$};
\draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$};
\draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}yx+b$};
\draw[<->, black](1.5,1.125) -- (3,1.125);
\draw[<->, black](4,1.125) -- (4,3);
\draw[<->, black](3.25,1.125) -- (3.25,1.875);
\draw[<->, black](3.25,3) -- (3.25,1.875);
\draw[black](3,3) -- (4.5,3);
\draw[black](3,1.125) -- (4.5,1.125);
\draw[black](3,1.875) -- (3.75,1.875);
\filldraw[black] (2.25,0.75) node{$\Delta x$};
\filldraw[black] (4.3,2) node{$\Delta y$};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}y$}};
\filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}};
\end{tikzpicture}
所以可微就是用简单线性取代复杂线性,如图用直线取替代曲线。
\section{导数与微分计算}
\subsection{四则运算}
若函数可导:
\begin{enumerate}
\item 和差的导数或微分:$[u(x)\pm v(x)]'=u'(x)\pm v'(x)$$\rm{d}[u(x)\pm v(x)]=\rm{d}u(x)\pm\rm{d}v(x)$
\item 积的导数或微分:$[u(x)v(x)]'=u'(x)v(x)+u(x)v'(x)$$\rm{d}[u(x)v(x)]=u(x)\rm{d}v(x)+v(x)\rm{d}u(x)$$[u(x)v(x)w(x)]'=u'(x)v(x)w(x)+u(x)v'(x)w(x)+u(x)v(x)+w'(x)$
\item 商的导数:$\left[\dfrac{u(x)}{v(x)}\right]'=\dfrac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2}$$\rm{d}\left[\dfrac{u(x)}{v(x)}\right]=\dfrac{v(x)\rm{d}u(x)-u(x)\rm{d}v(x)}{[v(x)]^2}$$v(x)\neq 0$
\item 复合函数的导数:链式求导法则$\dfrac{\rm{d}u}{\rm{d}x}=\dfrac{\rm{d}u}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x}$
\end{enumerate}
\subsection{分段函数的导数}
$f(x)=\left\{
\begin{array}{lcl}
f_1(x), & & x\geqslant x_0 \\
f_2(x), & & x<x_0 \\
\end{array}
\right.$
在分段点用定义:判断$f'_+(x_0)=\lim_{x\to x_0^+}\dfrac{f_1(x)-f(x_0)}{x-x_0}\overset{?}{=}\lim_{x\to x_0^-}\dfrac{f_2(x)-f(x_0)}{x-x_0}$
非分段点使用导数公式求导:$x>x_0,f'(x)=f_1'(x),x<0f'(x)=f_2'(x)$
\subsection{复合函数的导数与微分形式不变性}
$u=g(x)$$x$可导,$y=f(u)$$u=g(x)$处可导,则$\{f[g(x)]\}'=f'[g(x)]g'(x)$$\rm{d}\{f[g(x)]\}=f'[g(x)]g'(x)\rm{d}x$
一阶微分形式不变性指:$\rm{d}f(\varsigma)=f'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么。(类似导数的链式求导法则)
\textbf{例题7}$f(x)=\Pi_{n=1}^{100}\left(\tan\dfrac{\pi x^a}{4}-n\right)$,则$f'(1)$为?
原式=$\left(\tan\dfrac{\pi x}{4}-1\right)\left(\tan\dfrac{\pi x^2}{4}-2\right)\cdots\left(\tan\dfrac{\pi x^100}{4}-100\right)$
$\left(\tan\dfrac{\pi x^2}{4}-2\right)\cdots\left(\tan\dfrac{\pi x^100}{4}-100\right)=g(x)$
$\therefore f(x)=\left(\tan\dfrac{\pi x}{4}-1\right)\cdot g(x)$
$\therefore f'(x)=\sec^2\dfrac{\pi x}{4}\cdot\dfrac{\pi}{4}\cdot g(x)+\left(\tan\dfrac{\pi x}{4}-1\right)\cdot g'(x)$
$\therefore$根据导数的四则运算,需要导数的乘积为每一项求导乘以其他不求导项的和,而$\tan\dfrac{\pi x}{4}-1$$x=1$时为0只要它不求导其他的项都必然是0所以原式的后面的结果都是0。
$\therefore$
$
\begin{aligned}
f'(1) & =f'(x)\vert_{x=1} \\
& =\dfrac{\pi}{2}\cdot g(1)+0\cdot g'(x) \\
& =\dfrac{\pi}{2}\cdot g(1) \\
& =\dfrac{\pi}{2}(-1)(-2)\cdots(-99) \\
& =-\dfrac{\pi}{2}\cdot 99!
\end{aligned}
$
\textbf{例题8}$y=e^{\sin(\ln x)}$,求$\rm{d}y$
$\because y=e^{\sin(\ln x)} \therefore$
$
\begin{aligned}
\rm{d}y &=\rm{d}e^{\sin(\ln x)} \\
& =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln x)) \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln x \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}x
\end{aligned}
$
\subsection{反函数导数}
\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$,则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}x}{\rm{d}y}=\dfrac{1}{\dfrac{\rm{d}y}{\rm{d}x}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$
$y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有反函数。
\textbf{例题9}$y=\arcsin x,x\in(-1,1)$$y=\arctan x$的导数。
首先反三角函数就是三角函数的反函数、
$y=\arcsin x$,即$x=\sin y$
$\therefore\dfrac{\rm{d}\arcsin x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\sin y}{\rm{d}y}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$
$y=\arctan x$,就$x=\tan y$
$\therefore\dfrac{\rm{d}\arctan x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\tan y}{\rm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$
\subsection{参数方程函数导数}
\subsection{隐函数求导法}
\subsection{对数求导法}
@@ -165,5 +274,10 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{
\subsubsection{莱布尼茨公式}
\subsubsection{泰勒公式}
\subsection{变限积分求导公式}
必然会考。
已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}x$$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$
\subsection{基本求导公式}
\end{document}