mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-11 14:26:24 +08:00
更新
This commit is contained in:
Binary file not shown.
@@ -37,7 +37,7 @@
|
||||
\newpage
|
||||
\pagestyle{plain}
|
||||
\setcounter{page}{1}
|
||||
\section{向量代数}
|
||||
% \section{向量代数}
|
||||
|
||||
\section{空间解析几何}
|
||||
|
||||
@@ -49,6 +49,8 @@
|
||||
|
||||
\subsection{空间曲线}
|
||||
|
||||
\subsubsection{投影}
|
||||
|
||||
\subsection{空间曲面}
|
||||
|
||||
\section{场论初步}
|
||||
|
||||
Binary file not shown.
@@ -159,29 +159,65 @@ $\dfrac{1}{x+1}=\dfrac{1}{(x-1)+2}=\dfrac{1}{2}\dfrac{1}{1+\frac{x-1}{2}}=\dfrac
|
||||
|
||||
所以其幂级数就是其加和,收敛区间为$(-2,4)\cap(-1,3)=(-1,3)$。
|
||||
|
||||
\subsubsection{先导后积}
|
||||
|
||||
\textbf{例题:}求函数$f(x)=\arctan x$在$x=0$处的幂级数展开。
|
||||
|
||||
解:$f'(x)=(\arctan x)'=\dfrac{1}{1+x^2}=\dfrac{1}{1-(-x^2)}=\sum\limits_{n=0}^\infty(-1)^nx^{2n}$,$\vert-x^2\vert<1$。
|
||||
|
||||
已经求得求导后的函数的幂级数展开,所以求原函数的幂级数展开只需要积分,利用先导后积公式:$f(x)=f(0)+\int_0^xf'(t)\,\textrm{d}t=\int_0^x\sum\limits_{n=0}^\infty(-1)^nt^{2n}\,\textrm{d}t=\sum\limits_{n=0}^\infty(-1)^n\dfrac{t^{2n+1}}{2n+1}\bigg|_0^x=\sum\limits_{n=0}^\infty(-1)^n\dfrac{x^{2n+1}}{2n+1}$。
|
||||
|
||||
求导的级数要求$\vert x\vert<1$,代入$x=\pm1$到最后结果得到两个交错级数,所以收敛域其实为$[-1,1]$(可以不写)。
|
||||
|
||||
\subsection{级数求和}
|
||||
|
||||
即对展开式进行逆运算,根据幂级数展开式反推原幂级数。
|
||||
|
||||
可以利用展开式求和函数,但是很多展开式的通项都不是公式中的,就需要对通项进行变形。
|
||||
|
||||
在求和之前要先计算收敛半径和收敛域。
|
||||
|
||||
无论是哪个方法都要求求导和积分后系数$n+a$与幂次$n$相等,所以求导或积分的目的就是为了让他们相同,从而能被看成一个整体。
|
||||
|
||||
\subsubsection{先导后积}
|
||||
|
||||
$n$在分母上,先导后积。使用变限积分:$\int_{x_0}^xS'(t)\,\textrm{d}t=S(x)-S(x_0)$,即$S(x)=S(x_0)+\int_{x_0}^xS'(t)\,\textrm{d}t$。一般选择$x_0$为展开点。
|
||||
$\sum\dfrac{x^{f(n)}}{P(n)}$:$n$在分母上,先导后积。使用变限积分:$\int_{x_0}^xS'(t)\,\textrm{d}t=S(x)-S(x_0)$,即$S(x)=S(x_0)+\int_{x_0}^xS'(t)\,\textrm{d}t$。一般选择$x_0$为展开点。
|
||||
|
||||
\textbf{例题:}求级数$\sum\limits_{n=1}^\infty\dfrac{x^n}{n}$的和函数。
|
||||
主要公式:$\sum\limits_{n=1}^\infty\dfrac{(-1)^{n-1}}{n}x^n=\ln(1+x)$($(-1,1]$);$\sum\limits_{n=1}^\infty\dfrac{x^n}{n}=-\ln(1-x)$($[-1,1)$)。
|
||||
|
||||
解:已知$\sum\limits_{n=0}^\infty x^n=\dfrac{1}{1-x}$,而这里求和是$\dfrac{x^n}{n}$,所以需要对其进行转换。
|
||||
目的是让$P(n)=f(n)$。
|
||||
|
||||
对$\dfrac{x^n}{n}$求导就得到了$x^{n-1}$消去了分母的$n$,所以使用先导后积的方法。
|
||||
% \textbf{例题:}求级数$\sum\limits_{n=1}^\infty\dfrac{x^n}{n}$的和函数。
|
||||
|
||||
记$S(x)=\sum\limits_{n=1}^\infty\dfrac{x^n}{n}$,则$x^n=(x-0)^n$,取$x_0=0$。
|
||||
% 解:已知$\sum\limits_{n=0}^\infty x^n=\dfrac{1}{1-x}$,而这里求和是$\dfrac{x^n}{n}$,所以需要对其进行转换。
|
||||
|
||||
$\therefore S(x)=S(0)+\displaystyle{\int_0^x\left(\sum\limits_{n=1}^\infty\dfrac{t^n}{n}\right)_t'\,\textrm{d}t}=0+\int_0^x(\sum\limits_{n=1}^\infty t^{n-1})\,\textrm{d}t=\displaystyle{\int_0^x\dfrac{1}{1-t}\textrm{d}t}=-\ln(1-x)$。收敛域为$[-1,1)$。
|
||||
% 对$\dfrac{x^n}{n}$求导就得到了$x^{n-1}$消去了分母的$n$,所以使用先导后积的方法。
|
||||
|
||||
% 记$S(x)=\sum\limits_{n=1}^\infty\dfrac{x^n}{n}$,则$x^n=(x-0)^n$,取$x_0=0$。
|
||||
|
||||
% $\therefore S(x)=S(0)+\displaystyle{\int_0^x\left(\sum\limits_{n=1}^\infty\dfrac{t^n}{n}\right)_t'\,\textrm{d}t}=0+\int_0^x(\sum\limits_{n=1}^\infty t^{n-1})\,\textrm{d}t=\displaystyle{\int_0^x\dfrac{1}{1-t}\textrm{d}t}=-\ln(1-x)$。收敛域为$[-1,1)$。
|
||||
|
||||
\textbf{例题:}求级数$\sum\limits_{n=0}^\infty\dfrac{(-1)^n}{2n+1}x^{2n}$的和函数。
|
||||
|
||||
解:首先$\lim\limits_{n\to\infty}\left\vert\dfrac{a_{n+1}}{a_n}\right\vert=1$,$R=1$。
|
||||
|
||||
当$x=\pm1$时,$x^2n=1$,所以原式$=\sum\limits_{n=0}^\infty\dfrac{(-1)^n}{2n+1}$,为交错级数,由莱布尼茨判别法可知极限为0且单调递减,从而该级数收敛。从而收敛域为$[-1,1]$。
|
||||
|
||||
令$S(x)=\sum\limits_{n=0}^\infty\dfrac{(-1)^n}{2n+1}x^{2n}$。易得$x=0$时$S(x)=1$。
|
||||
|
||||
当$x\neq0$时,$S(x)=\dfrac{1}{x}\sum\limits_{n=0}^\infty\dfrac{(-1)^n}{2n+1}x^{2n+1}=\dfrac{1}{x}\sum\limits_{n=0}^\infty\int_0^x(-1)^nx^{2n}\,\textrm{d}x\\=\dfrac{1}{x}\int_0^x[\sum\limits_{n=0}^\infty(-1)^nx^{2n}]\textrm{d}x$。
|
||||
|
||||
所以$(-1)^nx^{2n}$为一个几何级数,所以$q=\dfrac{(-1)^{n+1}x^{2n+2}}{(-1)^nx^{2n}}=-x^2$。
|
||||
|
||||
从而$=\displaystyle{\dfrac{1}{x}\int_0^x\dfrac{1}{1+x^2}\textrm{d}x=\dfrac{\arctan x}{x}}$。
|
||||
|
||||
\subsubsection{先积后导}
|
||||
|
||||
$n$在分子上,先积后导。$(\int S(x)\,\textrm{d}x)'=S(x)$。
|
||||
$\sum P(n)x^{f(n)}$:$n$在分子上,先积后导。$(\int S(x)\,\textrm{d}x)'=S(x)$。
|
||||
|
||||
主要公式:$\sum\limits_{n=0}^\infty(-1)^nx^n=\dfrac{1}{1+x}$($(-1,1)$);$\sum\limits_{n=0}^\infty x^n=\dfrac{1}{1-x}$($(-1,1)$)。
|
||||
|
||||
目的是让$P(n)=f^{(n)}(n)\cdots f'(n)$。
|
||||
|
||||
\textbf{例题:}求级数$\sum\limits_{n=1}^\infty nx^n$的和函数。
|
||||
|
||||
|
||||
Binary file not shown.
@@ -75,7 +75,8 @@
|
||||
a_x & a_y & a_z \\
|
||||
b_x & b_y & b_z
|
||||
\end{array}\right\vert$,其中$\vert a\times b\vert=\vert a\vert\vert b\vert\sin\theta$,用右手规则确定方向(转向角不超过$\pi$),其中$\theta$为$\vec{a},\vec{b}$夹角。
|
||||
\item $a//b\Leftrightarrow\theta=0$或$\pi\Leftrightarrow\dfrac{a_x}{b_x}=\dfrac{a_y}{b_y}=\dfrac{a_z}{b_z}$。
|
||||
\item $\vec{a}//\vec{b}\Leftrightarrow\theta=0\Leftrightarrow\vec{a}\times\vec{b}=0$或$\pi\Leftrightarrow\dfrac{a_x}{b_x}=\dfrac{a_y}{b_y}=\dfrac{a_z}{b_z}$。
|
||||
\item $\vec{a}\times\vec{a}=0$。
|
||||
\end{itemize}
|
||||
|
||||
向量积的计算也可以如此理解,将两个向量上下摞在一起,然后右边再复制一份:
|
||||
@@ -93,6 +94,8 @@ $\left[\begin{array}{cccccc}
|
||||
b_x & b_y & b_z \\
|
||||
c_x & c_y & c_z \\
|
||||
\end{array}\right\vert$。
|
||||
\item 交换两行不改变值:$a\cdot(b\times c)=b\cdot(c\times a)=c\cdot(a\times b)$。
|
||||
\item 交换一行改变符号:$a\cdot(b\times c)=-a\cdot(c\times b)=-b\cdot(a\times c)=-c\cdot(b\times a)$。
|
||||
\item $\left\vert\begin{array}{ccc}
|
||||
a_x & a_y & a_z \\
|
||||
b_x & b_y & b_z \\
|
||||
|
||||
Binary file not shown.
@@ -369,13 +369,13 @@ $\sum\limits_{n=1}^\infty a_n(x+1)^n$要转换为$\sum\limits_{n=1}^\infty na_n(
|
||||
|
||||
\subsubsection{重要展开式}
|
||||
|
||||
$x$的取值指其幂指数的收敛域。第七个幂函数问题较复杂,收敛区间与$\alpha$取值有关。
|
||||
$x$的取值指其幂指数的收敛域和$x$定义域的交集。第七个幂函数问题较复杂,收敛区间与$\alpha$取值有关。
|
||||
|
||||
\begin{enumerate}
|
||||
\item $e^x=\sum\limits_{n=0}^\infty\dfrac{x^n}{n!}=1+x+\dfrac{x^2}{2!}+\dfrac{x^n}{n!}+\cdots$,$-\infty<x<+\infty$。
|
||||
\item $\dfrac{1}{1+x}=\sum\limits_{n=0}^\infty(-1)^nx^n=1-x+x^2-x^3+\cdots+(-1)^nx^n+\cdots$,$-1<x<1$。
|
||||
\item $\dfrac{1}{1-x}=\sum\limits_{n=0}^\infty x^n=1+x+x^2+\cdots+x^n+\cdots$,$-1<x<1$。
|
||||
\item $\ln(1+x)=\sum\limits_{n=0}^\infty(-1)^{n-1}\dfrac{x^n}{n}=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}+\cdots+(-1)^{n-1}\dfrac{x^n}{n}+\cdots$,$-1<x\leqslant1$。
|
||||
\item $\ln(1+x)=\sum\limits_{n=1}^\infty(-1)^{n-1}\dfrac{x^n}{n}=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}+\cdots+(-1)^{n-1}\dfrac{x^n}{n}+\cdots$,$-1<x\leqslant1$。
|
||||
\item $\sin x=\sum\limits_{n=0}^\infty(-1)^n\dfrac{x^{2x+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}+(-1)^n\dfrac{x^{2n+1}}{(2n+1)!}+\cdots$,$-\infty<x<+\infty$。
|
||||
\item $\cos x=\sum\limits_{n=0}^\infty(-1)^n\dfrac{x^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+(-1)^n\dfrac{x^{2n}}{(2n)!}+\cdots$,$-\infty<x<+\infty$。
|
||||
\item $(1+x)^\alpha=1+\alpha x+\dfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\dfrac{a(a-1)\cdots(a-n+1)}{n!}x^n+\cdots$,$\left\{\begin{array}{l}
|
||||
@@ -397,14 +397,6 @@ $x$的取值指其幂指数的收敛域。第七个幂函数问题较复杂,
|
||||
|
||||
利用已知的七个幂级数展开式,通过变量代换、四则运算、逐项求导、逐项积分和待定系数等得到。
|
||||
|
||||
\textbf{例题:}求函数$f(x)=\arctan x$在$x=0$处的幂级数展开。
|
||||
|
||||
解:$f'(x)=(\arctan x)'=\dfrac{1}{1+x^2}=\dfrac{1}{1-(-x^2)}=\sum\limits_{n=0}^\infty(-1)^nx^{2n}$,$\vert-x^2\vert<1$。
|
||||
|
||||
已经求得求导后的函数的幂级数展开,所以求原函数的幂级数展开只需要积分,利用先导后积公式:$f(x)=f(0)+\int_0^xf'(t)\,\textrm{d}t=\int_0^x\sum\limits_{n=0}^\infty(-1)^nt^{2n}\,\textrm{d}t=\sum\limits_{n=0}^\infty(-1)^n\dfrac{t^{2n+1}}{2n+1}\bigg|_0^x=\sum\limits_{n=0}^\infty(-1)^n\dfrac{x^{2n+1}}{2n+1}$。
|
||||
|
||||
求导的级数要求$\vert x\vert<1$,代入$x=\pm1$到最后结果得到两个交错级数,所以收敛域其实为$[-1,1]$(可以不写)。
|
||||
|
||||
\subsection{幂级数求和函数}
|
||||
|
||||
即函数展开的逆操作。
|
||||
|
||||
Binary file not shown.
@@ -348,11 +348,15 @@ $f(x)-f(x)=0$,所以得证。
|
||||
|
||||
\subsection{概念}
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}形如$x^2\dfrac{\textrm{d}^2y}{\textrm{d}x^2}+px\dfrac{\textrm{d}y}{\textrm{d}x}+qy=f(x)$的方程称为\textbf{欧拉方程},其中$pq$为常数,$f(x)$为已知函数。
|
||||
\textcolor{violet}{\textbf{定义:}}形如$x^2y''+pxy'+qy=f(x)$的方程称为\textbf{欧拉方程},其中$pq$为常数,$f(x)$为已知函数。
|
||||
|
||||
注意与一般的二阶常系数非齐次线性微分方程$y''+py'+qy=f(x)$对比,其二阶导和一阶导前面多了$x$的多项式。
|
||||
|
||||
% $x^2\dfrac{\textrm{d}^2y}{\textrm{d}x^2}+px\dfrac{\textrm{d}y}{\textrm{d}x}+qy=f(x)$
|
||||
|
||||
\subsection{解法}
|
||||
|
||||
使用换元法。
|
||||
使用换元法$x=e^t$将欧拉方程换为二阶常系数非齐次线性方程。
|
||||
|
||||
当$x>0$时,令$x=e^t$,则$t=\ln x$,$\dfrac{\textrm{d}t}{\textrm{d}x}=\dfrac{1}{x}$,$\dfrac{\textrm{d}y}{\textrm{d}x}=\dfrac{\textrm{d}y}{\textrm{d}t}\dfrac{\textrm{d}t}{\textrm{d}x}=\dfrac{1}{x}\dfrac{\textrm{d}y}{\textrm{d}t}$,$\dfrac{\textrm{d}^2y}{\textrm{d}x^2}=\dfrac{\textrm{d}}{\textrm{d}x}\left(\dfrac{1}{x}\dfrac{\textrm{d}y}{\textrm{d}t}\right)=-\dfrac{1}{x^2}\dfrac{\textrm{d}y}{\textrm{d}t}+\dfrac{1}{x}\dfrac{\textrm{d}}{\textrm{d}x}\left(\dfrac{\textrm{d}y}{\textrm{d}t}\right)=-\dfrac{1}{x^2}\dfrac{\textrm{d}y}{\textrm{d}t}+\dfrac{1}{x^2}\dfrac{\textrm{d}^2y}{\textrm{d}t^2}$,方程化为$\dfrac{\textrm{d}^2y}{\textrm{d}t^2}+(p-1)\dfrac{\textrm{d}y}{\textrm{d}t}+qy=f(e^t)$,解出结果,组后用$t=\ln x$回代。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user