mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-09 13:25:57 +08:00
更新准备
This commit is contained in:
@@ -1,86 +0,0 @@
|
||||
# 准备
|
||||
|
||||
**参考教材**:张宇考研数学基础三十讲。
|
||||
|
||||
**高等数学难题最多**,数学一的高等数学重点在高数下。
|
||||
|
||||
## 函数的概念与特性
|
||||
|
||||
###  函数
|
||||
|
||||
一个x对应一个y,一个y可以对应多个x。
|
||||
|
||||
###  反函数
|
||||
|
||||
###  复合函数
|
||||
|
||||
###  有界性
|
||||
|
||||
###  单调性
|
||||
|
||||
###  奇偶性
|
||||
|
||||
###  周期性
|
||||
|
||||
## 函数的图像
|
||||
|
||||
###  直角坐标系图像
|
||||
|
||||
####   常见图像
|
||||
|
||||
1. 基本初等函数与初等函数
|
||||
|
||||
2.分段函数
|
||||
|
||||
####   图像变换
|
||||
|
||||
1.平移变换
|
||||
|
||||
2.堆成变换
|
||||
|
||||
3.伸缩变换
|
||||
|
||||
###  极坐标系图像
|
||||
|
||||
####   描点法
|
||||
|
||||
1.心形线(外摆线)
|
||||
|
||||
2.玫瑰线
|
||||
|
||||
3.阿基米德螺线
|
||||
|
||||
4.伯努利双扭线
|
||||
|
||||
####   直角坐标系下画极坐标图像
|
||||
|
||||
###  参数法
|
||||
|
||||
####   摆线(平摆线)
|
||||
|
||||
####   星形线(内摆线)
|
||||
|
||||
## 常用基础知识
|
||||
|
||||
###  数列
|
||||
|
||||
###  三角函数
|
||||
|
||||
###  指数运算法则
|
||||
|
||||
###  对数运算法则
|
||||
|
||||
###  一元二次方程基础
|
||||
|
||||
###  因式分解公式
|
||||
|
||||
###  阶乘与双阶乘
|
||||
|
||||
###  常用不等式
|
||||
|
||||
+ $\frac{e^x-e^{-x}}{2}$:双曲正弦。
|
||||
+ $\frac{e^x+e^{-x}}{2}$:双曲余弦。
|
||||
+ $\ln(x+\sqrt{x^2+1})$:反双曲正弦。
|
||||
+ $\ln(x+\sqrt{x^2-1})$:反双曲余弦。
|
||||
|
||||
+ 见到$\sqrt{u}$,$\sqrt[3]{u}$,用u即可研究最值。
|
||||
@@ -6,8 +6,8 @@
|
||||
% 因为所以
|
||||
\usepackage{amsmath}
|
||||
% 数学公式
|
||||
\setcounter{tocdepth}{4}
|
||||
\setcounter{secnumdepth}{4}
|
||||
\setcounter{tocdepth}{5}
|
||||
\setcounter{secnumdepth}{5}
|
||||
% 设置四级目录
|
||||
\usepackage{geometry}
|
||||
\geometry{papersize={21cm,29.7cm}}
|
||||
@@ -147,11 +147,11 @@ $,求$f[f(x)]$
|
||||
\right.
|
||||
$
|
||||
|
||||
然后画图:\\
|
||||
然后画图:\bigskip
|
||||
|
||||
\begin{tikzpicture}[domain=-1:9.5]
|
||||
\draw[-latex](-1.5,0) -- (9.5,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-1.5) -- (0, 1.5) node[above]{$y-aixs$};
|
||||
\draw[-latex](0,-1.5) -- (0, 1.5) node[above]{$y-axis$};
|
||||
\draw[very thin, gray, densely dashed](-1.5,1.5)grid(9.5,-1.5);
|
||||
\draw [black, thick](-0.25,-1.5) -- (1,1);
|
||||
\draw[black, thick,domain=1:9.5] plot (\x, {ln(sqrt(\x))});
|
||||
@@ -209,7 +209,7 @@ $
|
||||
|
||||
\subsection{周期性}
|
||||
|
||||
$f(x+T)=f(x)$,其中T为周期。 \\
|
||||
$f(x+T)=f(x)$,其中T为周期。 \bigskip
|
||||
|
||||
\textcolor{red}{重要结论:}
|
||||
|
||||
@@ -226,28 +226,128 @@ $f(x+T)=f(x)$,其中T为周期。 \\
|
||||
\section{函数的图像}
|
||||
\subsection{直角坐标系图像}
|
||||
\subsubsection{常见图像}
|
||||
\paragraph{基本初等函数与初等函数}
|
||||
\paragraph{基本初等函数与初等函数} \leavevmode \bigskip
|
||||
|
||||
基本初等函数包括:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数。
|
||||
|
||||
1. 常数函数:$y=A$,A为常数,图像平行于x轴:
|
||||
\subparagraph{常数函数} \leavevmode \bigskip
|
||||
|
||||
$y=A$,A为常数,图像平行于x轴:
|
||||
|
||||
\begin{tikzpicture}[domain=-1:5]
|
||||
\draw[-latex](-1,0) -- (5,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-0.5) -- (0, 1.5) node[above]{$y-aixs$};
|
||||
\draw[-latex](0,-0.5) -- (0, 1.5) node[above]{$y-axis$};
|
||||
\draw[black, thick](-1,1) -- (5,1) node[below]{$y=A$};
|
||||
\end{tikzpicture}
|
||||
|
||||
2. 幂函数:$y=x^{\mu}$,$\mu$为实数,当$x>0$,$y=x^{\mu}$都有定义:
|
||||
\subparagraph{幂函数} \leavevmode \bigskip
|
||||
|
||||
$y=x^{\mu}$,$\mu$为实数,当$x>0$,$y=x^{\mu}$都有定义:
|
||||
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\draw[-latex](-2,0) -- (2,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-2) -- (0,4) node[above]{$y-aixs$};
|
||||
\draw[black, thick,domain=0.3:2] plot (\x,1/\x) node[below]{$\mu =-1$};
|
||||
\draw[black, thick,domain=-2:-0.5] plot (\x,1/\x) node[above]{$\mu =-1$};
|
||||
\draw[black, thick,domain=0.01:2] plot (\x, {sqrt(\x)}) node[below]{$\mu =\frac{1}{2}$};
|
||||
\draw[black, thick,domain=-2:2] plot (\x,\x) node[above]{$\mu =1$};
|
||||
\draw[black, thick,domain=-2:2] plot (\x, {\x*\x}) node[above]{$\mu =2$};
|
||||
\draw[-latex](0,-2) -- (0,4) node[above]{$y-axis$};
|
||||
\draw[black, thick, domain=0.3:2] plot (\x,1/\x) node[below]{$\mu =-1$};
|
||||
\draw[black, thick, domain=-2:-0.5] plot (\x,1/\x) node[above]{$\mu =-1$};
|
||||
\draw[black, thick, domain=0.01:2] plot (\x, {sqrt(\x)}) node[below]{$\mu =\frac{1}{2}$};
|
||||
\draw[black, thick, domain=-2:2] plot (\x,\x) node[above]{$\mu =1$};
|
||||
\draw[black, thick, domain=-2:2] plot (\x, {\x*\x}) node[above]{$\mu =2$};
|
||||
\end{tikzpicture}
|
||||
|
||||
所以对于幂函数,可以根据不同幂下相同单调性来研究最值:
|
||||
|
||||
\begin{enumerate}
|
||||
\item $\sqrt{u},\sqrt[3]{u}$可以使用$u$来研究。
|
||||
\item $\vert u\vert$可以使用$u^2$来研究。
|
||||
\item $\frac{1}{u},u>0$可以使用$u$来研究,但是最值相反。
|
||||
\item $u_1u_2...u_n$可以使用$\sum_{i=1}^{n}\ln u_i$来研究。
|
||||
\end{enumerate}
|
||||
|
||||
\subparagraph{指数函数} \leavevmode \bigskip
|
||||
|
||||
$y=a^x(a>0,a\neq 1)$:
|
||||
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\draw[-latex](-2,0) -- (2,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-0.5) -- (0,4) node[above]{$y-axis$};
|
||||
\draw[black, thick, domain=-2:2] plot (\x,{pow(1/2,\x)}) node at (-1.5,2){$0<a<1$};
|
||||
\draw[black, thick, domain=-2:2] plot (\x,{pow(2,\x)}) node at (1.5,2){$a>1$};
|
||||
\end{tikzpicture}
|
||||
|
||||
指数函数具有如下性质:
|
||||
|
||||
\begin{enumerate}
|
||||
\item 特殊函数值:$a^0=1$。
|
||||
\item 定义域:$(-\infty, +\infty)$,值域:$(0,+\infty)$。
|
||||
\item 单调性:$a>1$,$y=a^x$单调增,$0<a<1$,$y=a^x$单调减。
|
||||
\item 常用指数函数:$y=e^x$。
|
||||
\item 极限:$\lim_{x\to -\infty}e^x=0$,$\lim_{x\to +\infty}e^x=+\infty$。
|
||||
\end{enumerate}
|
||||
|
||||
\subparagraph{对数函数} \leavevmode \bigskip
|
||||
|
||||
$y=log_ax(a>0,a\neq 1)$为$y=a^x$的反函数:
|
||||
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\draw[-latex](-0.5,0) -- (4,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-2) -- (0,2) node[above]{$y-axis$};
|
||||
\draw[black, thick, domain=0.2:4] plot (\x,{ln(1/\x)}) node at (e,1.5){$0<a<1$};
|
||||
\draw[black, thick, domain=0.2:4] plot (\x,{ln(\x)}) node at (e,-1.5){$a>1$};
|
||||
\end{tikzpicture}
|
||||
|
||||
对数函数具有如下性质:
|
||||
|
||||
\begin{enumerate}
|
||||
\item 特殊函数值:$\log_a1=0$,$log_aa=1,\ln 1=0,\ln e=1$。
|
||||
\item 定义域:$(0, +\infty)$,值域:$(-\infty,+\infty)$。
|
||||
\item 单调性:$a>1$,$y=\log_ax$单调增,$0<a<1$,$y=\log_ax$单调减。
|
||||
\item 常用对数函数:$y=\ln x$,$e=2.71828...$。
|
||||
\item 极限:$\lim_{x\to 0^+}\log_a x=-\infty$,$\lim_{x\to +\infty}\log_ax=+\infty$。
|
||||
\item 常用公式:$x=e^{\ln x}$,$u^v=e^{\ln u^v}=e^{v\ln u}(x>0,u>0)$
|
||||
\end{enumerate}
|
||||
|
||||
\subparagraph{三角函数} \leavevmode \bigskip
|
||||
|
||||
正弦函数:
|
||||
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\draw[-latex](-5,0) -- (5,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-1.5) -- (0,2) node[above]{$y-axis$};
|
||||
\draw[black, thick, domain=-5:5] plot (\x,{sin(\x r)}) node at (0,1.5){$\sin(x)$};
|
||||
\draw [black, densely dashed](-5,1) -- (5,1) node[below]{$x=1$};
|
||||
\draw [black, densely dashed](-5,-1) -- (5,-1) node[below]{$x=-1$};
|
||||
\draw [black, densely dashed](-pi/2*3,1) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$};
|
||||
\draw [black, densely dashed](-pi,0) -- (-pi,0) node[below]{$-\pi$};
|
||||
\draw [black, densely dashed](-pi/2,-1) -- (-pi/2,0) node[above]{$-\frac{\pi}{2}$};
|
||||
\draw [black, densely dashed](0,0) -- (0,0) node[above]{$0$};
|
||||
\draw [black, densely dashed](pi/2,1) -- (pi/2,0) node[below]{$\frac{\pi}{2}$};
|
||||
\draw [black, densely dashed](pi,0) -- (pi,0) node[below]{$\pi$};
|
||||
\end{tikzpicture}
|
||||
|
||||
余弦函数:
|
||||
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\draw[-latex](-5,0) -- (5,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-1.5) -- (0,2) node[above]{$y-axis$};
|
||||
\draw[black, thick, domain=-5:5] plot (\x,{cos(\x r)}) node at (0,1.5){$\sin(x)$};
|
||||
\draw [black, densely dashed](-5,1) -- (5,1) node[below]{$x=1$};
|
||||
\draw [black, densely dashed](-5,-1) -- (5,-1) node[below]{$x=-1$};
|
||||
\draw [black, densely dashed](-pi/2*3,0) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$};
|
||||
\draw [black, densely dashed](-pi,-1) -- (-pi,0) node[above]{$-\pi$};
|
||||
\draw [black, densely dashed](-pi/2,0) -- (-pi/2,0) node[below]{$-\frac{\pi}{2}$};
|
||||
\draw [black, densely dashed](0,1) -- (0,0) node[below]{$0$};
|
||||
\draw [black, densely dashed](pi/2,0) -- (pi/2,0) node[below]{$\frac{\pi}{2}$};
|
||||
\draw [black, densely dashed](pi,-1) -- (pi,0) node[above]{$\pi$};
|
||||
\end{tikzpicture}
|
||||
|
||||
\subparagraph{反三角函数} \leavevmode \bigskip
|
||||
|
||||
反正弦函数:
|
||||
|
||||
\begin{tikzpicture}
|
||||
\draw[-latex](-1.5,0) -- (1.5,0) node[below]{$x-axis$};
|
||||
\draw[-latex](0,-2) -- (0,2) node[above]{$y-axis$};
|
||||
\draw[black, thick, domain=-5:5] plot (\x,{arcsin(\x r)}) node at (1,pi/2){$\sin(x)$};
|
||||
\end{tikzpicture}
|
||||
|
||||
\paragraph{分段函数}
|
||||
|
||||
Reference in New Issue
Block a user