1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-09 21:35:26 +08:00

更新曲率部分与相关题目

This commit is contained in:
Didnelpsun
2021-02-11 22:59:19 +08:00
parent 3305da1358
commit 561f0cd624
2 changed files with 246 additions and 0 deletions

View File

@@ -0,0 +1,87 @@
\documentclass[UTF8, 12pt]{ctexart}
% UTF8编码ctexart现实中文
\usepackage{color}
% 使用颜色
\usepackage{geometry}
\setcounter{tocdepth}{4}
\setcounter{secnumdepth}{4}
% 设置四级目录与标题
\geometry{papersize={21cm,29.7cm}}
% 默认大小为A4
\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm}
% 默认页边距为1英尺与1.25英尺
\usepackage{indentfirst}
\setlength{\parindent}{2.45em}
% 首行缩进2个中文字符
\usepackage{setspace}
\renewcommand{\baselinestretch}{1.5}
% 1.5倍行距
\usepackage{amssymb}
% 因为所以
\usepackage{amsmath}
% 数学公式
\author{Didnelpsun}
\title{导数与微分}
\date{}
\begin{document}
\maketitle
\pagestyle{empty}
\thispagestyle{empty}
\tableofcontents
\thispagestyle{empty}
\newpage
\pagestyle{plain}
\setcounter{page}{1}
\section{一阶导数}
\subsection{导数存在性}
导数存在即可导。
\subsection{导数连续性}
\subsection{已知导数求极限}
\section{高阶导数}
\subsection{导数存在性}
\section{微分}
\section{隐函数与参数方程}
\section{导数应用}
\subsection{单调性与凹凸性}
\subsection{极值与最值}
\subsection{函数图像}
\subsection{曲率}
曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
\subsubsection{一般计算}
\textbf{例题:}$y=\sin xx$$x=\dfrac{\pi}{4}$对应的曲率
$y'=\cos x$$y'(\dfrac{\pi}{4})=\dfrac{\sqrt{2}}{2}$
$y''=-\sin x$$y''(\dfrac{\pi}{4})=-\dfrac{\sqrt{2}}{2}$
$\therefore k=\dfrac{\dfrac{\sqrt{2}}{2}}{\dfrac{3}{2}\cdot\sqrt{\dfrac{3}{2}}}=\dfrac{2\sqrt{3}}{9}$
所以$y=\sin x$$x=\dfrac{\pi}{4}$的点$(\dfrac{\pi}{4},\dfrac{\sqrt{2}}{2})$的曲率为$\dfrac{2\sqrt{3}}{9}$
\subsubsection{最值}
\textbf{例题:}$y=x^2-4x+11$曲率最大值所在的点。
简单得$y'=2x-4$$y''=2$
曲率为$\dfrac{2}{[1+(2x-4)^2]^{\frac{3}{2}}}$
$2x-4=0$时即在$(2,7)$时曲率最大为2。
\end{document}

View File

@@ -31,6 +31,10 @@
% 圆圈序号
\usepackage{mathtools}
% 有字的长箭头
\usepackage{yhmath}
% 弧线标识
\usetikzlibrary{decorations.pathreplacing}
% tikz的大括号
\author{Didnelpsun}
\title{微分中值定理与导数的应用}
\date{}
@@ -453,4 +457,159 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取
\item$\lim\limits_{x\to\infty}\dfrac{f(x)}{x}=a,b=\lim\limits_{x\to\infty}(f(x)-ax)$,那么$y=ax+b$就是斜渐近线。
\end{itemize}
\section{弧微分与曲率}
\subsection{弧微分}
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}[scale=3]
\draw[-latex](-0.1,0) -- (1.25,0) node[below]{$x$};
\draw[-latex](0,-0.1) -- (0,1.25) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick,domain=0.4:1.1] plot (\x, \x*\x);
\filldraw[black] (0.5,1) node {$y=f(x)$};
\draw[densely dashed](0.5,0.25) -- (0.5, 0) node[below]{$x$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\Delta x$};
\draw[densely dashed](0.5,0.25) -- (1,0.25);
\filldraw[black](0.5,0.35) node{$y$};
\filldraw[black](0.95,1.1) node{$y_0$};
\filldraw[black](0.75,0.35) node{$\Delta x$};
\filldraw[black](1.1,0.6) node{$\Delta y$};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.4\linewidth}
$\vert\wideparen{yy_0}\vert=S(x)$
$\Delta y=f(x+\Delta x)-f(x)$
$(\Delta s)^2\approx(\Delta x)^2+(\Delta y)^2$
\end{minipage}\medskip
当偏移量无穷小时,$y=f(x)$所构成的线段就是一条直线,所以:
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}[scale=3]
\draw[-latex](-0.1,0) -- (1.25,0) node[below]{$x$};
\draw[-latex](0,-0.1) -- (0,1.25) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick,domain=0.4:1.1] plot (\x, \x);
\filldraw[black] (0.5,1) node {$y=f(x)$};
\draw[densely dashed](0.5,0.5) -- (0.5, 0) node[below]{$x$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d} x$};
\draw[densely dashed](0.5,0.5) -- (1,0.5);
\filldraw[black](0.5,0.6) node{$y$};
\filldraw[black](0.95,1.1) node{$y_0$};
\filldraw[black](0.75,0.35) node{$\rm{d} x$};
\filldraw[black](1.1,0.6) node{$\rm{d} y$};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.4\linewidth}
$\rm{d} y=f(x+\rm{d} x)-f(x)$
$(\rm{d} s)^2=(\rm{d} x)^2+(\rm{d} y)^2$
$\rm{d}s=\sqrt{(\rm{d}x)^2+(\rm{d}y)^2}$(弧微分)
\end{minipage}
对于弧微分:
\begin{itemize}
\item 若直角坐标系下$y=f(x)$$\rm{d}s=\sqrt{1+\left(\dfrac{\rm{d}y}{\rm{d}x}\right)^2}\rm{d}x$$=\sqrt{1+f'^2(x)}\rm{d}x$,即$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$
\item 若参数方程下:$x=\phi(t),y=\psi(t)$$\rm{d}s=\sqrt{\left(\dfrac{\rm{d}x}{\rm{d}t}\right)^2+\left(\dfrac{\rm{d}y}{\rm{d}t}\right)^2}\rm{d}t$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$,即$\rm{d}s=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$
\end{itemize}
\subsection{曲率与曲率半径}
曲率\textcolor{violet}{\textbf{定义:}}表明曲线在某一点的弯曲程度的数值,针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。曲率越大,表示曲线的弯曲程度越大。
曲率的倒数就是曲率半径。\medskip
\begin{minipage}{0.5\linewidth}
两点切线改变角相同时,弯曲程度与两点之间的弧长度成反比。
两点之间的弧长度相同时,弯曲程度与两点切线改变角成正比。
\end{minipage}
\hfill
\begin{minipage}{0.2\linewidth}
\begin{tikzpicture}[scale=0.6]
\draw[black, thick,domain=-2:2] plot (\x, {\x*\x});
\filldraw[black] (-1,1) circle (2pt) node[left]{$M_1$};
\filldraw[black] (1,1) circle (2pt) node[right]{$N_1$};
\draw[black](2,3) -- (0,-1);
\draw[black](-2,3) -- (0,-1);
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.2\linewidth}
\begin{tikzpicture}[scale=0.6]
\draw[black, thick,domain=-1.5:1.5] plot (\x, {2*\x*\x});
\filldraw[black] (-1/2,1/2) circle (2pt) node[left]{$M_2$};
\filldraw[black] (1/2,1/2) circle (2pt) node[right]{$N_2$};
\draw[black](2,3.5) -- (0,-1/2);
\draw[black](-2,3.5) -- (0,-1/2);
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.3\linewidth}
\begin{tikzpicture}[scale=3]
\draw[-latex](-0.1,0) -- (1.25,0) node[below]{$x$};
\draw[-latex](0,-0.1) -- (0,1.25) node[above]{$y$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, thick,domain=-0.1:1.1] plot (\x, \x*\x);
\draw[densely dashed](0.5,0.25) -- (0.5, 0) node[below]{$x$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\Delta x$};
\filldraw[black](0.5,0.35) node{$y$};
\filldraw[black](0.95,1.1) node{$y_0$};
\filldraw[black] (1/2,1/4) circle (0.5pt);
\filldraw[black] (1,1) circle (0.5pt);
\draw[black](1,3/4) -- (1/4,0);
\draw[black](0.6,0.2) -- (9/8,5/4);
\draw[line width=0.1] (0.85,0.7) arc (50:0:0.1);
\filldraw[black](1,0.8) node{$\Delta\alpha$};
\filldraw[black](0.5,0.8) node{$\vert\wideparen{yy_0}\vert=\Delta s$};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.6\linewidth}
$y-y_0$平均曲率:$\hat{k}=\dfrac{\vert\Delta\alpha\vert}{\vert\Delta s\vert}$\medskip
$y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert$$\alpha$$y$处切线与$x$轴所成角)。
\end{minipage}\medskip
需要对曲率公式进行化简,得到$s$$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$
而对于$\alpha$$\tan\alpha=y'=f'(x)$
两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}x}=y''=f''(x)$
$\because\sec^2\alpha=1+\tan^2\alpha=1+y'^2$
$\therefore\dfrac{\rm{d}\alpha}{\rm{d}x}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{y''}{1+y'^2}\rm{d}x$
$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
\begin{minipage}{0.5\linewidth}
$\bigcirc O$为函数$L$在点$X$处的曲率圆,该圆与$L$$X$处相切,切线为$T$
该点的曲率半径为$R$,其中$R=\dfrac{1}{K}$
\end{minipage}
\hfill
\begin{minipage}{0.4\linewidth}
\begin{tikzpicture}[scale=2]
\draw (-1,0) -- (1,0);
\node (X) at (0,0)[below]{X};
\node (O) at (0,0.5)[above]{O};
\draw[densely dashed] (X) -- (O);
\filldraw[black] (0.75,0.25) node{$L$};
\draw[decorate,decoration={brace,mirror,raise=2pt}] (X) -- (O);
\filldraw[black] (0.2,0.25) node{$R$};
\filldraw[black] (-0.75,0) node{$T$};
\draw[black, thick,domain=-1:1] plot (\x, \x*\x);
\draw[black] (0,0.5) circle (0.5);
\end{tikzpicture}
\end{minipage}
\end{document}