1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-07 20:43:47 +08:00

更新微分格式

This commit is contained in:
Didnelpsun
2021-02-18 22:42:34 +08:00
parent 6b012b044d
commit 72ec7fbd84
6 changed files with 97 additions and 69 deletions

View File

@@ -643,7 +643,7 @@ $\therefore\lim\limits_{n\to\infty}x_n=\dfrac{1+\sqrt{5}}{2}$。
\subsection{变限积分极限}
已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}x$$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$
已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}\textit{x}$$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$
\end{document}

View File

@@ -251,10 +251,36 @@ $\quad\quad\quad+x^2(x+1)^2(x+2)^2\cdots 2(x+n)$
所以求$f''(0)$时,只有对一阶导数的第一项的第一个$x$求导所得到的导数项不为0其他都是0所以最后$f''(0)=2(x+1)^2(x+2)^2\cdots(x+n)^2=2(n!)^2$
\subsection{反函数高阶导数}
已知一阶导数的时候,反函数的导数为原函数导数的倒数($g'(x)=\dfrac{1}{f'(x)}$)。
因为原函数的一阶导数是$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$,而反函数就是对原函数的$xy$对调,所以其反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}$
\textbf{例题:}已知$y=x+e^x$,求其反函数的二阶导数。
$y=x+e^x$的反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}=\dfrac{1}{1+e^x}$
所以二阶导数为$\dfrac{\rm{d}^2\textit{x}}{\rm{d}\textit{y}^2}=\dfrac{\rm{d}\left(\dfrac{1}{1+\textit{e}^{\textit{x}}}\right)}{\rm{d}\textit{y}}=\dfrac{\dfrac{\rm{d}\left(\dfrac{1}{1+\textit{e}^{\textit{x}}}\right)}{\rm{d}\textit{x}}}{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}}=-\dfrac{e^x}{(1+e^x)^3}$
\section{微分}
\section{隐函数与参数方程}
隐函数与参数方程求导基本上只用记住:\medskip
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}$
\textbf{例题:}已知$y=y(x)$由参数方程$\left\{\begin{array}{lcl}
x=\dfrac{1}{2}\ln(1+t^2) \\
y=\arctan t
\end{array}
\right.$确定,求其一阶导数与二阶导数。
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}=\dfrac{\dfrac{1}{2}\cdot\dfrac{2t}{1+t^2}}{\dfrac{1}{1+t^2}}=\dfrac{1}{t}$
$\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}=\dfrac{-\dfrac{1}{t^2}}{\dfrac{t}{1+t^2}}=-\dfrac{1+t^2}{t^3}$
\section{导数应用}
\subsection{单调性与凹凸性}
@@ -265,11 +291,11 @@ $\quad\quad\quad+x^2(x+1)^2(x+2)^2\cdots 2(x+n)$
\subsection{曲率}
曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
\subsubsection{一般计算}
\textbf{例题:}$y=\sin xx$$x=\dfrac{\pi}{4}$对应的曲率
\textbf{例题:}$y=\sin x$$x=\dfrac{\pi}{4}$对应的曲率
$y'=\cos x$$y'(\dfrac{\pi}{4})=\dfrac{\sqrt{2}}{2}$

View File

@@ -354,9 +354,9 @@ $$
反切函数有如下特征:
\begin{enumerate}
\item 特殊函数值:$\arctan 0=0$$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$$\arctan 1=\dfrac{\pi}{4}$$\arctan\sqrt{3}=\dfrac{\pi}{3}$$\rm{arccot}0=\dfrac{\pi}{2}$$\rm{arccot}\sqrt{3}=\dfrac{\pi}{6}$$\rm{arccot}1=\dfrac{\pi}{4}$$\rm{arccot}\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$
\item 特殊函数值:$\arctan 0=0$$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$$\arctan 1=\dfrac{\pi}{4}$$\arctan\sqrt{3}=\dfrac{\pi}{3}$$\rm{arccot}\,0=\dfrac{\pi}{2}$$\rm{arccot}\,\sqrt{3}=\dfrac{\pi}{6}$$\rm{arccot}\,1=\dfrac{\pi}{4}$$\rm{arccot}\,\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$
\item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$$\rm{arccot}\,\textit{x}:[0,\pi]$
\item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}x$单调减。
\item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}\,\textit{x}$单调减。
\item 奇偶性:$y=\arctan x$为奇函数。
\item 有界性:$\vert\arctan x\vert\leqslant\dfrac{\pi}{2}$$0\leqslant\rm{arccot}\,\textit{x}\leqslant\pi$
\item 性质:$\arctan x+\rm{arccot}\,\textit{x}=\dfrac{\pi}{2}(-\infty<x<+\infty)$
@@ -409,7 +409,7 @@ $
\subparagraph{符号函数} \leavevmode \medskip
$
y=\rm{sgn}x=\left\{
y=\rm{sgn}\,\textit{x}=\left\{
\begin{array}{lcl}
1, & & x>0 \\
0, & & x=0 \\
@@ -423,7 +423,7 @@ $
\draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$};
\draw[black, thick, domain=0:2] plot (\x,1);
\draw[black, thick, domain=-2:0] plot (\x,-1);
\filldraw[black] (-1.5,1) node{$\rm{sgn}x$};
\filldraw[black] (-1.5,1) node{$\rm{sgn}\,\textit{x}$};
\filldraw[black] circle (2pt) (0,0) node[below]{$O$};
\filldraw[white, draw=black, line width=1pt] (0,1) circle (2pt);
\filldraw[black] (0,1) node[left]{$1$};
@@ -993,9 +993,9 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet
以后的华里士公式(点火公式)会使用到,如下面的题目:
\textbf{例题5}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\rm{d}x$$\int_0^{\frac{\pi}{2}}\cos^9x\rm{d}x$
\textbf{例题5}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\rm{d}\textit{x}$$\int_0^{\frac{\pi}{2}}\cos^9x\rm{d}\textit{x}$\medskip
原式1为偶数次幂所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$
原式1为偶数次幂所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$\medskip
原式2为奇数次幂所以$=\dfrac{8}{9}\cdot\dfrac{6}{7}\cdot\dfrac{4}{5}\cdot\dfrac{2}{3}=\dfrac{8!!}{9!!}$
@@ -1010,7 +1010,7 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet
\begin{enumerate}
\item $\vert a\pm b\vert\leqslant\vert a\vert+\vert b\vert$
\item 推广公式一到离散区间:$\vert a_1\pm a_2\pm a_3\pm\cdots\pm a_n\vert\leqslant\vert a_1\vert+\vert a_2\vert+\cdots+\vert a_n\vert$
\item 推广公式一到连续区间且$f(x)$$[a,b](a<b)$上可积:$\vert\int_a^bf(x)\rm{d}x\vert\leqslant\int_a^b\vert f(x)\vert\rm{d}x$。因为符号不一定相同的面积代数和一定小于同为正的面积代数和。
\item 推广公式一到连续区间且$f(x)$$[a,b](a<b)$上可积:$\vert\int_a^bf(x)\rm{d}\textit{x}\vert\leqslant\int_a^b\vert f(x)\vert\rm{d}\textit{x}$。因为符号不一定相同的面积代数和一定小于同为正的面积代数和。
\item $\vert\vert a\vert-\vert b\vert\vert\leqslant\vert a-b\vert$。后式子为两点之差,前式子可以看作$a$$b$两点与0之间的距离的差若异号则两者必然抵消一部分若同号则就等于后式。
\end{enumerate}

View File

@@ -89,7 +89,7 @@ $y=f(x)$,定义域为$D$,值域为$R$,若对于每一个$y\in R$,必然
$\therefore x\in[-1,3]$
$\therefore\dfrac{\rm{d}\psi(x)}{\rm{d}x}=(-x^2+2x+3)'=-2x+2=0$
$\therefore\dfrac{\rm{d}\psi(\textit{x})}{\rm{d}\textit{x}}=(-x^2+2x+3)'=-2x+2=0$
$\therefore x=1$驻点为1
@@ -117,7 +117,7 @@ $f(-x)=\ln(-x+\sqrt{x^2+1})=\ln(\dfrac{1}{\sqrt{x^2+1}+x})=-\ln(x+\sqrt{x^2+1})=
对其求单调性,即通过链式法则求导:
$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{1}{x+\sqrt{x^2+1}}\cdot (1+\dfrac{2x}{2\sqrt{x^2+1}})=\dfrac{1}{\sqrt{x^2+1}}>0$\medskip
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{1}{x+\sqrt{x^2+1}}\cdot (1+\dfrac{2x}{2\sqrt{x^2+1}})=\dfrac{1}{\sqrt{x^2+1}}>0$\medskip
所以该函数严格单调增。
@@ -217,8 +217,8 @@ $y=f(x)\,x\in D$,如果$\forall x_1,x_2\in D$且$x_1<x_2$,有$f(x_1)<f(x_2)$
\medskip
$\begin{matrix}
\dfrac{\rm{d}y}{\rm{d}x}>0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]>0 & \Rightarrow & f(x)\nearrow \\
\dfrac{\rm{d}y}{\rm{d}x}<0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]<0 & \Rightarrow & f(x)\searrow
\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}>0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]>0 & \Rightarrow & f(x)\nearrow \\
\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}<0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]<0 & \Rightarrow & f(x)\searrow
\end{matrix}
$
@@ -245,7 +245,7 @@ $f(x+T)=f(x)$其中T为周期。 \medskip
\item$f(x)$为周期函数,则$f'(x)$也为周期函数且周期不变。
\item 连续的奇函数的一切原函数都是偶函数。
\item 连续的偶函数的原函数中仅有一个原函数是奇函数。
\item 若连续函数$f(x)$以T为周期且$\int_{0}^{T}f(x)\rm{d}x=0$,则$f(x)$的一切原函数也以T为周期。
\item 若连续函数$f(x)$以T为周期且$\int_{0}^{T}f(x)\rm{d}\textit{x}=0$,则$f(x)$的一切原函数也以T为周期。
\item$f(x)$在有限区间$(a,b)$中可导且$f'(x)$有界,则$f(x)$$(a,b)$有界。(某一函数在固定区间内变化率是有界的,则变化范围是有界的)
\end{enumerate}

View File

@@ -193,7 +193,9 @@ $=u'(x)v(x)+v'(x)u(x)$
\subsection{反函数导数}
\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}x}{\rm{d}y}=\dfrac{1}{\dfrac{\rm{d}y}{\rm{d}x}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$\medskip
\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$
则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}=\dfrac{1}{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$\medskip
$y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有反函数。
@@ -201,13 +203,13 @@ $y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有
首先反三角函数就是三角函数的反函数。
$y=\arcsin x$,即$x=\sin y$
$y=\arcsin x$,即$x=\sin y$\medskip
$\therefore\dfrac{\rm{d}\arcsin x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\sin y}{\rm{d}y}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$\medskip
$\therefore\dfrac{\rm{d}\arcsin\textit{x}}{\rm{d}\textit{x}}=\dfrac{1}{\dfrac{\rm{d}\sin\textit{y}}{\rm{d}\textit{y}}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$\medskip
$y=\arctan x$,就$x=\tan y$\medskip
$\therefore\dfrac{\rm{d}\arctan x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\tan y}{\rm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$\medskip
$\therefore\dfrac{\rm{d}\arctan\textit{x}}{\rm{d}\textit{x}}=\dfrac{1}{\dfrac{\rm{d}\tan\textit{y}}{\rm{d}\textit{y}}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$\medskip
二阶反函数导数\textcolor{aqua}{\textbf{定理:}}
@@ -215,21 +217,21 @@ $f''(x)$
$=y''_{xx}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}$\medskip
$=\dfrac{\rm{d}^2y}{\rm{d}x^2}$\medskip
$=\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\rm{d}x}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(\textit{y})}\right)}{\rm{d}\textit{x}}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x}$\medskip
$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(\textit{y})}\right)}{\rm{d}\textit{y}}\cdot\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$\medskip
$=-\dfrac{x_{yy}''}{(x_y')^2}\cdot\dfrac{1}{x_y'}$\medskip
$=-\dfrac{x_{yy}''}{(x_y')^3}$\medskip
其中$\rm{d}x\cdot\rm{d}x=(\rm{d}x)^2=\rm{d}x^2$称为微分的幂,而$\rm{d}(x^2)$叫幂的微分。
其中$\rm{d}\textit{x}\cdot\rm{d}\textit{x}=(\rm{d}\textit{x})^2=\rm{d}\textit{x}^2$称为微分的幂,而$\rm{d}(x^2)$叫幂的微分。
\textbf{例题:}$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\rm{d}t+1$,求$\varphi''(1)$
\textbf{例题:}$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\rm{d}\textit{t}+1$,求$\varphi''(1)$
$\because y=f(x)$$\therefore x=\varphi(y)$$x_{yy}''=\varphi''(y)=-\dfrac{y_{xx}''}{(y_x')^3}=-\dfrac{f''(x)}{[f'(x)]^3}$\medskip
@@ -241,7 +243,7 @@ $\because y=f(x)$$\therefore x=\varphi(y)$$x_{yy}''=\varphi''(y)=-\dfrac{y
$u=g(x)$$x$可导,$y=f(u)$$u=g(x)$处可导,则$\{f[g(x)]\}'=f'[g(x)]g'(x)$
\textbf{例题:}$f(x)=\Pi_{n=1}^{100}\left(\tan\dfrac{\pi x^a}{4}-n\right)$,则$f'(1)$为?
\textbf{例题:}$f(x)=\prod\limits_{n=1}^{100}\left(\tan\dfrac{\pi x^a}{4}-n\right)$,则$f'(1)$为?
原式=$\left(\tan\dfrac{\pi x}{4}-1\right)\left(\tan\dfrac{\pi x^2}{4}-2\right)\cdots\left(\tan\dfrac{\pi x^100}{4}-100\right)$
@@ -492,9 +494,9 @@ $
\medskip
一阶导数:$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{\rm{d}y/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$
一阶导数:$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\rm{d}\textit{y}/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$
二阶导数:$\dfrac{\rm{d}^2y}{\rm{d}x^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{\rm{d}u/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{u'_t}{x'_t}$
二阶导数:$\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{\rm{d}u/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{u'_t}{x'_t}$
\textbf{例题:}$y=y(x)$由方程$\left\{
\begin{array}{l}
@@ -502,13 +504,13 @@ $
y=t\sin t+\cos t
\end{array}
\right.
$$t$为参数)确定,求$\dfrac{\rm{d}^2y}{\rm{d}x^2}\vert_{t=\frac{\pi}{4}}$
$$t$为参数)确定,求$\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}\vert_{t=\frac{\pi}{4}}$
求参数方程的二阶导数首先就要求出其一阶导数:
求参数方程的二阶导数首先就要求出其一阶导数:\medskip
$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$\medskip
$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$\medskip
$\therefore\dfrac{\rm{d}^2y}{\rm{d}x^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$\medskip
$\therefore\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$\medskip
$\therefore \sqrt{2}$
@@ -526,9 +528,9 @@ $\therefore \sqrt{2}$。
$\Delta x\to 0$时,将这个变化定义为$2x\cdot\Delta x+o(\Delta x)$,前项为线性主部,后面为误差。这个就是$S$的微分。
增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\rm{d}y$,叫做$y$的微分。
增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\rm{d}\textit{y}$,叫做$y$的微分。
$\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{d}x$
$\therefore \rm{d}\textit{y}\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{d}\textit{x}$
由此,可导必可微,可微必可导。
@@ -541,7 +543,7 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{
\draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$};
\draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$};
\draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}yx+b$};
\draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}\textit{y}\cdot\textit{x}+\textit{b}$};
\draw[<->, black](1.5,1.125) -- (3,1.125);
\draw[<->, black](4,1.125) -- (4,3);
\draw[<->, black](3.25,1.125) -- (3.25,1.875);
@@ -551,7 +553,7 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{
\draw[black](3,1.875) -- (3.75,1.875);
\filldraw[black] (2.25,0.75) node{$\Delta x$};
\filldraw[black] (4.3,2) node{$\Delta y$};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}y$}};
\filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}\textit{y}$}};
\filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}};
\end{tikzpicture}
@@ -564,28 +566,28 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{
若函数可导:
\begin{enumerate}
\item 和差的微分:$\rm{d}[u(x)\pm v(x)]=\rm{d}u(x)\pm\rm{d}v(x)$
\item 积的微分:$\rm{d}[u(x)v(x)]$$=u(x)\rm{d}v(x)+v(x)\rm{d}u(x)$
\item 商的微分:$\rm{d}\left[\dfrac{u(x)}{v(x)}\right]=\dfrac{v(x)\rm{d}u(x)-u(x)\rm{d}v(x)}{[v(x)]^2}$$v(x)\neq 0$
\item 复合函数的微分:链式求导法则$\dfrac{\rm{d}u}{\rm{d}x}=\dfrac{\rm{d}u}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x}$
\item 和差的微分:$\rm{d}[\textit{u}(\textit{x})\pm\textit{v}(\textit{x})]=\rm{d}\textit{u}(\textit{x})\pm\rm{d}\textit{v}(\textit{x})$
\item 积的微分:$\rm{d}[\textit{u}(\textit{x})\textit{v}(\textit{x})]$$=\textit{u}(\textit{x})\rm{d}\textit{v}(\textit{x})+\textit{v}(\textit{x})\rm{d}\textit{u}(\textit{x})$
\item 商的微分:$\rm{d}\left[\dfrac{\textit{u}(\textit{x})}{\textit{v}(\textit{x})}\right]=\dfrac{\textit{v}(\textit{x})\rm{d}\textit{u}(\textit{x})-\textit{u}(\textit{x})\rm{d}\textit{v}(\textit{x})}{[\textit{v}(\textit{x})]^2}$$\textit{v}(\textit{x})\neq 0$
\item 复合函数的微分:链式求导法则$\dfrac{\rm{d}\textit{u}}{\rm{d}\textit{x}}=\dfrac{\rm{d}\textit{u}}{\rm{d}\textit{y}}\cdot\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$
\end{enumerate}
\subsubsection{微分形式不变性}
$y=f(u)$可微,$u=g(x)$可微,则$y=f(g(x))$可微,且$\rm{d}y=y'_x\rm{d}x=y'_u\rm{d}u$。即对哪个变量求导都是一样的,即$\rm{d}\{f[g(x)]\}=f'[g(x)]g'(x)\rm{d}x$
$y=f(u)$可微,$u=g(x)$可微,则$y=f(g(x))$可微,且$\rm{d}\textit{y}=\textit{y}'_{\textit{x}}\rm{d}\textit{x}=\textit{y}'_{\textit{u}}\rm{d}\textit{u}$。即对哪个变量求导都是一样的,即$\rm{d}\{\textit{f}\,[\textit{g}(\textit{x})]\}=\textit{f}\,'[\textit{g}(\textit{x})]\textit{g}'(\textit{x})\rm{d}\textit{x}$
一阶微分形式不变性指:$\rm{d}f(\varsigma)=f'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么(类似导数的链式求导法则)。
一阶微分形式不变性指:$\rm{d}\textit{f}\,(\varsigma)=\textit{f}\,'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么(类似导数的链式求导法则)。
\textbf{例题:}$y=e^{\sin(\ln x)}$,求$\rm{d}y$
\textbf{例题:}$y=e^{\sin(\ln x)}$,求$\rm{d}\textit{y}$
$\because y=e^{\sin(\ln x)} \therefore$
$
\begin{aligned}
\rm{d}y &=\rm{d}e^{\sin(\ln x)} \\
& =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln x)) \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln x \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}x
\rm{d}\textit{y} &=\rm{d}e^{\sin(\ln\textit{x})} \\
& =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln\textit{x})) \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln\textit{x} \\
& =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}\textit{x}
\end{aligned}
$
@@ -624,15 +626,15 @@ $
\subsection{双曲与反双曲函数}
\begin{itemize}
\item 双曲正弦:$\rm{sinh}\,\textit{x}=\rm{sh}\,\textit{x}=\dfrac{e^x-e^{-x}}{2}$
\item 双曲余弦:$\rm{cosh}\,\textit{x}=\rm{ch}\,\textit{x}=\dfrac{e^x+e^{-x}}{2}$
\item 双曲正切:$\rm{tanh}\,\textit{x}=\rm{th}\,\textit{x}=\dfrac{\rm{sinh}\,\textit{x}}{\rm{cosh}\,\textit{x}}=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}$
\item 双曲余切:$\rm{coth}\,\textit{x}=\dfrac{\rm{cosh}\,\textit{x}}{\rm{sinh}\,\textit{x}}=\dfrac{e^x+e^{-x}}{e^x-e^{-x}}$
\item 双曲正割:$\rm{sech}\,\textit{x}=\dfrac{1}{\rm{cosh}\,\textit{x}}=\dfrac{2}{e^x+e^{-x}}$
\item 双曲余割:$\rm{csch}\,\textit{x}=\dfrac{1}{\rm{sinh}\,\textit{x}}=\dfrac{2}{e^x-e^{-x}}$
\item 反双曲正弦:$\rm{arcsinh}\,\textit{x}=\ln\left(x+\sqrt{x^2+1}\right)$
\item 反双曲余弦:$\rm{arccosh}\,\textit{x}=\ln\left(x+\sqrt{x^2-1}\right)$
\item 反双曲正切:$\rm{arctanh}\,\textit{x}=\dfrac{1}{2}\ln\left(\dfrac{1+x}{1-x}\right)$
\item 双曲正弦:$\rm{sinh}\,\textit{x}=\rm{sh}\,\textit{x}=\dfrac{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}{2}$
\item 双曲余弦:$\rm{cosh}\,\textit{x}=\rm{ch}\,\textit{x}=\dfrac{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}{2}$
\item 双曲正切:$\rm{tanh}\,\textit{x}=\rm{th}\,\textit{x}=\dfrac{\rm{sinh}\,\textit{x}}{\rm{cosh}\,\textit{x}}=\dfrac{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}$
\item 双曲余切:$\rm{coth}\,\textit{x}=\dfrac{\rm{cosh}\,\textit{x}}{\rm{sinh}\,\textit{x}}=\dfrac{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}$
\item 双曲正割:$\rm{sech}\,\textit{x}=\dfrac{1}{\rm{cosh}\,\textit{x}}=\dfrac{2}{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}$
\item 双曲余割:$\rm{csch}\,\textit{x}=\dfrac{1}{\rm{sinh}\,\textit{x}}=\dfrac{2}{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}$
\item 反双曲正弦:$\rm{arcsinh}\,\textit{x}=\ln\left(\textit{x}+\sqrt{\textit{x}^2+1}\right)$
\item 反双曲余弦:$\rm{arccosh}\,\textit{x}=\ln\left(\textit{x}+\sqrt{\textit{x}^2-1}\right)$
\item 反双曲正切:$\rm{arctanh}\,\textit{x}=\dfrac{1}{2}\ln\left(\dfrac{1+\textit{x}}{1-\textit{x}}\right)$
\end{itemize}
\begin{center}

View File

@@ -496,28 +496,28 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取
\draw[black, thick,domain=0.4:1.1] plot (\x, \x);
\filldraw[black] (0.5,1) node {$y=f(x)$};
\draw[densely dashed](0.5,0.5) -- (0.5, 0) node[below]{$x$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d} x$};
\draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d}\textit{x}$};
\draw[densely dashed](0.5,0.5) -- (1,0.5);
\filldraw[black](0.5,0.6) node{$y$};
\filldraw[black](0.95,1.1) node{$y_0$};
\filldraw[black](0.75,0.35) node{$\rm{d} x$};
\filldraw[black](1.1,0.6) node{$\rm{d} y$};
\filldraw[black](0.75,0.35) node{$\rm{d}\textit{x}$};
\filldraw[black](1.1,0.6) node{$\rm{d}\textit{y}$};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.4\linewidth}
$\rm{d} y=f(x+\rm{d} x)-f(x)$
$\rm{d}\textit{y}=\textit{f}\,(\textit{x}+\rm{d}\textit{x})-\textit{f}\,(\textit{x})$
$(\rm{d} s)^2=(\rm{d} x)^2+(\rm{d} y)^2$
$(\rm{d}\textit{s})^2=(\rm{d}\textit{x})^2+(\rm{d}\textit{y})^2$
$\rm{d}s=\sqrt{(\rm{d}x)^2+(\rm{d}y)^2}$(弧微分)
$\rm{d}\textit{s}=\sqrt{(\rm{d}\textit{x})^2+(\rm{d}\textit{y})^2}$(弧微分)
\end{minipage}
对于弧微分:
\begin{itemize}
\item 若直角坐标系下$y=f(x)$$\rm{d}s=\sqrt{1+\left(\dfrac{\rm{d}y}{\rm{d}x}\right)^2}\rm{d}x$$=\sqrt{1+f'^2(x)}\rm{d}x$,即$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$
\item 若参数方程下:$x=\phi(t),y=\psi(t)$$\rm{d}s=\sqrt{\left(\dfrac{\rm{d}x}{\rm{d}t}\right)^2+\left(\dfrac{\rm{d}y}{\rm{d}t}\right)^2}\rm{d}t$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$,即$\rm{d}s=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$
\item 若直角坐标系下$y=f(x)$$\rm{d}\textit{s}=\sqrt{1+\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)^2}\rm{d}\textit{x}$$=\sqrt{1+f'^2(x)}\rm{d}\textit{x}$,即$\rm{d}\textit{s}=$$\sqrt{1+f'^2(x)}\rm{d}\textit{x}$
\item 若参数方程下:$x=\phi(t),y=\psi(t)$$\rm{d}\textit{s}=\sqrt{\left(\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}\right)^2+\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}\right)^2}\rm{d}\textit{t}$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}\textit{t}$,即$\rm{d}\textit{s}=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}\textit{t}$
\end{itemize}
\subsection{曲率}
@@ -575,20 +575,20 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取
\begin{minipage}{0.6\linewidth}
$y-y_0$平均曲率:$\hat{k}=\dfrac{\vert\Delta\alpha\vert}{\vert\Delta s\vert}$\medskip
$y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert$$\alpha$$y$处切线与$x$轴所成角)。
$y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert$$\alpha$$y$处切线与$x$轴所成角)。
\end{minipage}\medskip
需要对曲率公式进行化简,得到$s$$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$
需要对曲率公式进行化简,得到$s$$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}\textit{s}=$$\sqrt{1+f'^2(x)}\rm{d}\textit{x}$
而对于$\alpha$$\tan\alpha=y'=f'(x)$
两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}x}=y''=f''(x)$
两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}\textit{x}}=y''=f''(x)$
$\because\sec^2\alpha=1+\tan^2\alpha=1+y'^2$
$\therefore\dfrac{\rm{d}\alpha}{\rm{d}x}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{y''}{1+y'^2}\rm{d}x$
$\therefore\dfrac{\rm{d}\alpha}{\rm{d}\textit{x}}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{\textit{y}''}{1+\textit{y}\,'^2}\rm{d}\textit{x}$
$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$
\subsection{曲率半径}