1
0
mirror of https://github.com/Didnelpsun/Math.git synced 2026-02-07 04:23:42 +08:00

第一讲完成

This commit is contained in:
Didnelpsun
2021-01-16 16:25:10 +08:00
parent 42a8d20f83
commit acd302d391
2 changed files with 318 additions and 77 deletions

View File

@@ -25,9 +25,13 @@
% 为了实现相对位置的设定
\usepackage{xcolor}
% 为了实现不同的颜色
\usepackage{array}
% 设置表格行距
\author{Didnelpsun}
\title{考研数学准备}
\begin{document}
\renewcommand\arraystretch{1.5}
% 表格长1.5倍
\maketitle
\thispagestyle{empty}
\tableofcontents
@@ -60,7 +64,7 @@ $y=f(x)$,定义域为$D$,值域为$R$,若对于每一个$y\in R$,必然
$\therefore x\in[-1,3]$
$\therefore\frac{\rm{d}\psi(x)}{\rm{d}x}=(-x^2+2x+3)'=-2x+2=0$
$\therefore\dfrac{\rm{d}\psi(x)}{\rm{d}x}=(-x^2+2x+3)'=-2x+2=0$
$\therefore x=1$驻点为1
@@ -82,13 +86,13 @@ $x+\sqrt{x^2+1}>x+\vert x\vert \geqslant 0$,所以$x\in R$。
而研究其奇偶性:
$f(-x)=\ln(-x+\sqrt{x^2+1})=\ln(\frac{1}{\sqrt{x^2+1}+x})=-\ln(x+\sqrt{x^2+1})=-f(x)$
$f(-x)=\ln(-x+\sqrt{x^2+1})=\ln(\dfrac{1}{\sqrt{x^2+1}+x})=-\ln(x+\sqrt{x^2+1})=-f(x)$
所以该函数为奇函数。
对其求单调性,即通过链式法则求导:
$\frac{\rm{d}y}{\rm{d}x}=\frac{1}{x+\sqrt{x^2+1}}\cdot (1+\frac{2x}{2\sqrt{x^2+1}})=\frac{1}{\sqrt{x^2+1}}>0$
$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{1}{x+\sqrt{x^2+1}}\cdot (1+\dfrac{2x}{2\sqrt{x^2+1}})=\dfrac{1}{\sqrt{x^2+1}}>0$
所以该函数严格单调增。
@@ -105,7 +109,7 @@ $$
$$
\begin{aligned}
\because -y & =-\ln(x+\sqrt{x^2+1}) \\
& =\ln(\frac{1}{x+\sqrt{x^2+1}}) \\
& =\ln(\dfrac{1}{x+\sqrt{x^2+1}}) \\
& =\ln(\sqrt{x^2+1}-x) \\
e^{-y} & =\sqrt{x^2+1}-x
\end{aligned}
@@ -114,17 +118,17 @@ $$
$$
\begin{aligned}
\therefore e^y-e^{-y} & =2x \\
x & =\frac{e^y-e^{-y}}{2}
x & =\dfrac{e^y-e^{-y}}{2}
\end{aligned}
$$
解出了用x表示y的函数表达$x=f^{-1}(y)$,即反函数,则$f^{-1}(x)=\frac{e^x-e^{-x}}{2}$
解出了用x表示y的函数表达$x=f^{-1}(y)$,即反函数,则$f^{-1}(x)=\dfrac{e^x-e^{-x}}{2}$
这种曲线为一种常见曲线:
\begin{itemize}
\item $\frac{e^x-e^{-x}}{2}$:双曲正弦。
\item $\frac{e^x+e^{-x}}{2}$:双曲余弦。(为一种悬链线)
\item $\dfrac{e^x-e^{-x}}{2}$:双曲正弦。
\item $\dfrac{e^x+e^{-x}}{2}$:双曲余弦。(为一种悬链线)
\item $\ln(x+\sqrt{x^2+1})$:反双曲正弦。
\item $\ln(x+\sqrt{x^2-1})$:反双曲余弦。
\end{itemize}
@@ -184,8 +188,8 @@ $$
\subsection{单调性}
$\begin{matrix}
\frac{\rm{d}y}{\rm{d}x}>0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]>0 & \Rightarrow & f(x)\nearrow \\
\frac{\rm{d}y}{\rm{d}x}<0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]<0 & \Rightarrow & f(x)\searrow
\dfrac{\rm{d}y}{\rm{d}x}>0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]>0 & \Rightarrow & f(x)\nearrow \\
\dfrac{\rm{d}y}{\rm{d}x}<0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]<0 & \Rightarrow & f(x)\searrow
\end{matrix}
$
@@ -204,7 +208,7 @@ $
如当a为0时$f(b)-f(a)=f'(\xi )(b-a)=f(b)=bf'(\xi)$
$f(x)>xf(1)$变形为$\frac{f(x)}{x}>f(1)$,辅助函数$F(x)=\frac{f(x)}{x}$
$f(x)>xf(1)$变形为$\dfrac{f(x)}{x}>f(1)$,辅助函数$F(x)=\dfrac{f(x)}{x}$
所以加减法警惕0乘除法警惕1。
@@ -252,7 +256,7 @@ $y=x^{\mu}$$\mu$为实数,当$x>0$$y=x^{\mu}$都有定义:
\draw[-latex](0,-2) -- (0,4) node[above]{$y$};
\draw[black, thick, smooth, domain=0.3:2] plot (\x,1/\x) node[right]{$\mu =-1$};
\draw[black, thick, smooth, domain=-2:-0.5] plot (\x,1/\x) node[right]{$\mu =-1$};
\draw[black, thick, smooth, domain=0.01:2] plot (\x, {sqrt(\x)}) node[right]{$\mu =\frac{1}{2}$};
\draw[black, thick, smooth, domain=0.01:2] plot (\x, {sqrt(\x)}) node[right]{$\mu =\dfrac{1}{2}$};
\draw[black, thick, smooth, domain=-2:2] plot (\x,\x) node[right]{$\mu =1$};
\draw[black, thick, smooth, domain=-2:2] plot (\x, {\x*\x}) node[right]{$\mu =2$};
\filldraw[black] (0,0) node[below]{$O$};
@@ -264,7 +268,7 @@ $y=x^{\mu}$$\mu$为实数,当$x>0$$y=x^{\mu}$都有定义:
\begin{enumerate}
\item $\sqrt{u}\sqrt[3]{u}$可以使用$u$来研究。
\item $\vert u\vert$可以使用$u^2$来研究。
\item $\frac{1}{u},u>0$可以使用$u$来研究,但是最值相反。
\item $\dfrac{1}{u},u>0$可以使用$u$来研究,但是最值相反。
\item $u_1u_2...u_n$可以使用$\sum_{i=1}^{n}\ln u_i$来研究。
\end{enumerate}
@@ -323,9 +327,9 @@ $y=log_ax(a>0,a\neq 1)$为$y=a^x$的反函数:
\draw[black, thick, smooth, domain=-5:5] plot (\x,{sin(\x r)}) node at (0,1.5){$\sin(x)$};
\draw[black, densely dashed](-5,1) -- (5,1) node[right]{$x=1$};
\draw[black, densely dashed](-5,-1) -- (5,-1) node[right]{$x=-1$};
\draw[black, densely dashed](-pi/2*3,1) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$};
\draw[black, densely dashed](-pi/2,-1) -- (-pi/2,0) node[above]{$-\frac{\pi}{2}$};
\draw[black, densely dashed](pi/2,1) -- (pi/2,0) node[below]{$\frac{\pi}{2}$};
\draw[black, densely dashed](-pi/2*3,1) -- (-pi/2*3,0) node[below]{$-\dfrac{3\pi}{2}$};
\draw[black, densely dashed](-pi/2,-1) -- (-pi/2,0) node[above]{$-\dfrac{\pi}{2}$};
\draw[black, densely dashed](pi/2,1) -- (pi/2,0) node[below]{$\dfrac{\pi}{2}$};
\draw[black](0,0) -- (0,0) node[above]{$O$};
\filldraw[black] (-pi-0.1,0) node[below]{$-\pi$};
\filldraw[black] (pi,0) node[below]{$\pi$};
@@ -342,15 +346,15 @@ $y=log_ax(a>0,a\neq 1)$为$y=a^x$的反函数:
\draw[black, densely dashed](-pi,-1) -- (-pi,0) node[above]{$-\pi$};
\draw[black, densely dashed](pi,-1) -- (pi,0) node[above]{$\pi$};
\filldraw[black] (0,0) node[below]{$O$};
\filldraw[black] (-pi/2*3-0.25,0) node[below]{$-\frac{3\pi}{2}$};
\filldraw[black] (-pi/2,0) node[below]{$-\frac{\pi}{2}$};
\filldraw[black] (pi/2,0) node[below]{$\frac{\pi}{2}$};
\filldraw[black] (-pi/2*3-0.25,0) node[below]{$-\dfrac{3\pi}{2}$};
\filldraw[black] (-pi/2,0) node[below]{$-\dfrac{\pi}{2}$};
\filldraw[black] (pi/2,0) node[below]{$\dfrac{\pi}{2}$};
\end{tikzpicture}
弦函数有如下特征:
\begin{enumerate}
\item 特殊函数值:$\sin 0=0$$\sin\frac{\pi}{6}=\frac{1}{2}$$\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}$$\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}$$\sin\frac{\pi}{2}=1$$\sin\pi=0$$\sin\frac{3\pi}{2}=-1$$\sin 2\pi=0$$\cos 0=1$$\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$$\cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}$$\cos\frac{\pi}{3}=\frac{1}{2}$$\cos\frac{\pi}{2}=0$$\cos\pi=-1$$\cos\frac{3\pi}{2}=0$$\cos 2\pi=1$
\item 特殊函数值:$\sin 0=0$$\sin\dfrac{\pi}{6}=\dfrac{1}{2}$$\sin\dfrac{\pi}{4}=\dfrac{\sqrt{2}}{2}$$\sin\dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$$\sin\dfrac{\pi}{2}=1$$\sin\pi=0$$\sin\dfrac{3\pi}{2}=-1$$\sin 2\pi=0$$\cos 0=1$$\cos\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}$$\cos\dfrac{\pi}{4}=\dfrac{\sqrt{2}}{2}$$\cos\dfrac{\pi}{3}=\dfrac{1}{2}$$\cos\dfrac{\pi}{2}=0$$\cos\pi=-1$$\cos\dfrac{3\pi}{2}=0$$\cos 2\pi=1$
\item 定义域:$(-\infty, +\infty)$,值域:$[-1,+1]$
\item 奇偶性:$y=\sin x$为奇函数,$y=\cos x$为偶函数。
\item 周期性:最小正周期为$2\pi$
@@ -370,10 +374,10 @@ $y=log_ax(a>0,a\neq 1)$为$y=a^x$的反函数:
\draw[black, thick, domain=pi/2+0.5:pi/2*3-0.5] plot (\x,{tan(\x r)}) node[above]{$\tan(x)$};
\draw[black, densely dashed](-pi/2*3,2) -- (-pi/2*3,-2);
\filldraw[black] (0,0) node[below]{$O$};
\filldraw[black] (pi/2+0.5,-0.5) node{$\frac{\pi}{2}$};
\filldraw[black] (-pi/2-0.75,-0.5) node{$-\frac{\pi}{2}$};
\filldraw[black] (pi/2*3+0.5,-0.5) node{$\frac{3\pi}{2}$};
\filldraw[black] (-pi/2*3-0.75,-0.5) node{$-\frac{3\pi}{2}$};
\filldraw[black] (pi/2+0.5,-0.75) node{$\dfrac{\pi}{2}$};
\filldraw[black] (-pi/2-0.75,-0.75) node{$-\dfrac{\pi}{2}$};
\filldraw[black] (pi/2*3+0.5,-0.75) node{$\dfrac{3\pi}{2}$};
\filldraw[black] (-pi/2*3-0.75,-0.75) node{$-\dfrac{3\pi}{2}$};
\end{tikzpicture}
余切函数:
@@ -386,23 +390,23 @@ $y=log_ax(a>0,a\neq 1)$为$y=a^x$的反函数:
\draw[black, thick, domain=-0.5:-pi+0.5] plot (\x,{cot(\x r)}) node at(-1,2){$\cot(x)$};
\draw[black, densely dashed](-pi,2) -- (-pi,-2);
\filldraw[black] (0,0) node[below]{$O$};
\filldraw[black] (pi/2,0) node[below]{$\frac{\pi}{2}$};
\filldraw[black] (pi/2,0) node[below]{$\dfrac{\pi}{2}$};
\filldraw[black] (pi+0.5,-0.5) node{$\pi$};
\filldraw[black] (-pi/2-0.25,0) node[below]{$-\frac{\pi}{2}$};
\filldraw[black] (-pi/2-0.25,0) node[below]{$-\dfrac{\pi}{2}$};
\filldraw[black] (-pi-0.5,-0.5) node{$-\pi$};
\end{tikzpicture}
切函数有如下特征:
\begin{enumerate}
\item 特殊函数值:$\tan 0=0$$\tan\frac{\pi}{6}=\frac{\sqrt{3}}{3}$$\tan\frac{\pi}{4}=1$$\tan\frac{\pi}{3}=\sqrt{3}$$\lim_{x\to\frac{\pi}{2}}\tan x=\infty$$\tan\pi=0$$\lim_{x\to\frac{3\pi}{2}}\tan x=\infty$$\tan 2\pi=0$$\lim_{x\to 0}\cot x=\infty$$\cot\frac{\pi}{6}=\sqrt{3}$$\cot\frac{\pi}{4}=1$$\cot\frac{\pi}{3}=\frac{\sqrt{3}}{3}$$\cot\frac{\pi}{2}=0$$\lim_{x\to\pi}\cot x=\infty$$\cot\frac{3\pi}{2}=0$$\lim_{x\to 2\pi}\cot x=\infty$
\item 定义域:$\tan x:x\neq k\pi+\frac{\pi}{2}(k\in Z)$$\cot x:x\neq k\pi(k\in Z)$,值域:$(-\infty,+\infty)$
\item 特殊函数值:$\tan 0=0$$\tan\frac{\pi}{6}=\frac{\sqrt{3}}{3}$$\tan\frac{\pi}{4}=1$$\tan\frac{\pi}{3}=\sqrt{3}$$\lim_{x\to\frac{\pi}{2}}\tan x=\infty$$\tan\pi=0$$\lim_{x\to\frac{3\pi}{2}}\tan x=\infty$$\tan 2\pi=0$$\lim_{x\to 0}\cot x=\infty$$\cot\dfrac{\pi}{6}=\sqrt{3}$$\cot\dfrac{\pi}{4}=1$$\cot\dfrac{\pi}{3}=\dfrac{\sqrt{3}}{3}$$\cot\dfrac{\pi}{2}=0$$\lim_{x\to\pi}\cot x=\infty$$\cot\dfrac{3\pi}{2}=0$$\lim_{x\to 2\pi}\cot x=\infty$
\item 定义域:$\tan x:x\neq k\pi+\dfrac{\pi}{2}(k\in Z)$$\cot x:x\neq k\pi(k\in Z)$,值域:$(-\infty,+\infty)$
\item 奇偶性:定义域内均为奇函数。
\item 周期性:最小正周期为$\pi$
\end{enumerate}
$$
\sec x=\frac{1}{\cos x},\csc x=\frac{1}{\sin x}
\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x}
$$
正割函数:
@@ -424,10 +428,10 @@ $$
\filldraw[black] (0,0) node[below]{$O$};
\filldraw[black] (0.5,0.5) node{$1$};
\filldraw[black] (0.5,-1.5) node{$-1$};
\filldraw[black] (-pi/2*3-0.75,-0.5) node{$-\frac{3\pi}{2}$};
\filldraw[black] (-pi/2-0.75,-0.5) node{$-\frac{\pi}{2}$};
\filldraw[black] (pi/2+0.5,-0.5) node{$\frac{\pi}{2}$};
\filldraw[black] (pi/2*3+0.5,-0.5) node{$\frac{3\pi}{2}$};
\filldraw[black] (-pi/2*3-0.75,-0.5) node{$-\dfrac{3\pi}{2}$};
\filldraw[black] (-pi/2-0.75,-0.5) node{$-\dfrac{\pi}{2}$};
\filldraw[black] (pi/2+0.5,-0.5) node{$\dfrac{\pi}{2}$};
\filldraw[black] (pi/2*3+0.5,-0.5) node{$\dfrac{3\pi}{2}$};
\end{tikzpicture}
余割函数:
@@ -457,7 +461,7 @@ $$
割函数有如下特征:
\begin{enumerate}
\item 定义域:$\sec x:x\neq k\pi+\frac{\pi}{2}(k\in Z)$$\csc x:x\neq k\pi(k\in Z)$,值域:$(-\infty,-1]\cup [1,+\infty)$
\item 定义域:$\sec x:x\neq k\pi+\dfrac{\pi}{2}(k\in Z)$$\csc x:x\neq k\pi(k\in Z)$,值域:$(-\infty,-1]\cup [1,+\infty)$
\item 奇偶性:$y=\sec x$为偶函数,$y=\csc x$为奇函数。
\item 周期性:最小正周期为$2\pi$
\end{enumerate}
@@ -470,10 +474,10 @@ $$
\draw[-latex](-1.5,0) -- (1.5,0) node[below]{$x$};
\draw[-latex](0,-2) -- (0,2) node[above]{$y$};
\draw[black, thick, domain=-1:1] plot (\x,{rad(asin(\x))}) node[right]{$\arcsin(x)$};
\draw[black, densely dashed](1,pi/2) -- (0,pi/2) node[left]{$\frac{\pi}{2}$};
\draw[black, densely dashed](1,pi/2) -- (0,pi/2) node[left]{$\dfrac{\pi}{2}$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](1,pi/2) -- (1,0) node[below]{$1$};
\draw[black, densely dashed](-1,-pi/2) -- (0,-pi/2) node[right]{$-\frac{\pi}{2}$};
\draw[black, densely dashed](-1,-pi/2) -- (0,-pi/2) node[right]{$-\dfrac{\pi}{2}$};
\draw[black, densely dashed](-1,-pi/2) -- (-1,0) node[above]{$-1$};
\end{tikzpicture}
@@ -483,7 +487,7 @@ $$
\draw[-latex](-1.5,0) -- (1.5,0) node[below]{$x$};
\draw[-latex](0,-0.5) -- (0,4) node[above]{$y$};
\draw[black, thick, domain=-1:1] plot (\x,{rad(acos(\x)}) node at (-2, pi){$\arccos(x)$};
\filldraw[black] (0,pi/2) node[right]{$\frac{\pi}{2}$};
\filldraw[black] (0,pi/2+0.5) node[right]{$\dfrac{\pi}{2}$};
\draw[black](1,0) -- (1,0) node[below]{$1$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](-1,pi) -- (0,pi) node[right]{$\pi$};
@@ -493,19 +497,19 @@ $$
反弦函数有如下特征:
\begin{enumerate}
\item 特殊函数值:$\arcsin 0=0$$\arcsin\frac{1}{2}=\frac{\pi}{6}$$\arcsin\frac{\sqrt{2}}{2}=\frac{\pi}{4}$$\arcsin\frac{\sqrt{3}}{2}=\frac{\pi}{3}$$\arcsin 1=\frac{\pi}{2}$$\arccos 1=0$$\arccos\frac{\sqrt{3}}{2}=\frac{\pi}{6}$$\arccos\frac{\sqrt{2}}{2}=\frac{\pi}{4}$$\arccos\frac{1}{2}=\frac{\pi}{3}$$\arccos 0=\frac{\pi}{2}$
\item 定义域:$(-1, +1)$,值域:$\arcsin x:[-\frac{\pi}{2},+\frac{\pi}{2}]$$\arccos x:[0,\pi]$
\item 特殊函数值:$\arcsin 0=0$$\arcsin\dfrac{1}{2}=\dfrac{\pi}{6}$$\arcsin\dfrac{\sqrt{2}}{2}=\dfrac{\pi}{4}$$\arcsin\dfrac{\sqrt{3}}{2}=\dfrac{\pi}{3}$$\arcsin 1=\dfrac{\pi}{2}$$\arccos 1=0$$\arccos\dfrac{\sqrt{3}}{2}=\dfrac{\pi}{6}$$\arccos\dfrac{\sqrt{2}}{2}=\dfrac{\pi}{4}$$\arccos\dfrac{1}{2}=\dfrac{\pi}{3}$$\arccos 0=\dfrac{\pi}{2}$
\item 定义域:$(-1, +1)$,值域:$\arcsin x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$$\arccos x:[0,\pi]$
\item 单调性:$y=\arcsin x$单调增,$y=\arccos x$单调减。
\item 奇偶性:$y=\arcsin x$为奇函数。
\item 有界性:$\vert\arcsin x\vert\leqslant\frac{\pi}{2}$$0\leqslant\arccos x\leqslant\pi$
\item 性质:$\arcsin x+\arccos x=\frac{\pi}{2}(-1\leqslant x\leqslant 1)$
\item 有界性:$\vert\arcsin x\vert\leqslant\dfrac{\pi}{2}$$0\leqslant\arccos x\leqslant\pi$
\item 性质:$\arcsin x+\arccos x=\dfrac{\pi}{2}(-1\leqslant x\leqslant 1)$
\end{enumerate}
对反弦函数性质进行证明:
$f(x)=\arcsin x+\arccos x$,对其求导得:$f'(x)=\frac{1}{\sqrt{1-x^2}}-\frac{1}{1-x^2}=0$,所以$f(x)$是个常数函数。
$f(x)=\arcsin x+\arccos x$,对其求导得:$f'(x)=\dfrac{1}{\sqrt{1-x^2}}-\dfrac{1}{1-x^2}=0$,所以$f(x)$是个常数函数。
$f(0)=\frac{\pi}{2}$,所以该函数等于$\frac{\pi}{2}$
$f(0)=\dfrac{\pi}{2}$,所以该函数等于$\dfrac{\pi}{2}$
反正切函数:
@@ -516,8 +520,8 @@ $$
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](-3,pi/2) -- (3,pi/2);
\draw[black, densely dashed](-3,-pi/2) -- (3,-pi/2);
\filldraw[black] (0.5,pi/2-0.5) node{$\frac{\pi}{2}$};
\filldraw[black] (0.5,-pi/2-0.5) node{$-\frac{\pi}{2}$};
\filldraw[black] (0.5,pi/2-0.5) node{$\dfrac{\pi}{2}$};
\filldraw[black] (0.5,-pi/2-0.5) node{$-\dfrac{\pi}{2}$};
\end{tikzpicture}
反余切函数:
@@ -528,18 +532,18 @@ $$
\draw[black, thick, domain=-3:3] plot (\x,{pi/2-rad(atan(\x))}) node[right]{$\rm{arccot}(x)$};
\filldraw[black] (0,0) node[below]{$O$};
\draw[black, densely dashed](-3,pi) -- (3,pi);
\filldraw[black] (-0.5,pi/2-0.5) node{$\frac{\pi}{2}$};
\filldraw[black] (-0.5,pi/2-0.5) node{$\dfrac{\pi}{2}$};
\end{tikzpicture}
反切函数有如下特征:
\begin{enumerate}
\item 特殊函数值:$\arctan 0=0$$\arctan\frac{\pi}{6}=\frac{\sqrt{3}}{3}=$$\arctan 1=\frac{\pi}{4}$$\arctan\sqrt{3}=\frac{\pi}{3}$$\rm{arccot}0=\frac{\pi}{2}$$\rm{arccot}\sqrt{3}=\frac{\pi}{6}$$\rm{arccot}1=\frac{\pi}{4}$$\rm{arccot}\frac{\sqrt{3}}{3}=\frac{\pi}{3}$
\item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\frac{\pi}{2},+\frac{\pi}{2}]$$\rm{arccot}x:[0,\pi]$
\item 特殊函数值:$\arctan 0=0$$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$$\arctan 1=\dfrac{\pi}{4}$$\arctan\sqrt{3}=\dfrac{\pi}{3}$$\rm{arccot}0=\dfrac{\pi}{2}$$\rm{arccot}\sqrt{3}=\dfrac{\pi}{6}$$\rm{arccot}1=\dfrac{\pi}{4}$$\rm{arccot}\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$
\item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$$\rm{arccot}x:[0,\pi]$
\item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}x$单调减。
\item 奇偶性:$y=\arctan x$为奇函数。
\item 有界性:$\vert\arctan x\vert\leqslant\frac{\pi}{2}$$0\leqslant\rm{arccot}x\leqslant\pi$
\item 性质:$\arctan x+\rm{arccot}x=\frac{\pi}{2}(-\infty<x<+\infty)$
\item 有界性:$\vert\arctan x\vert\leqslant\dfrac{\pi}{2}$$0\leqslant\rm{arccot}x\leqslant\pi$
\item 性质:$\arctan x+\rm{arccot}x=\dfrac{\pi}{2}(-\infty<x<+\infty)$
\end{enumerate}
\subparagraph{初等函数} \leavevmode \bigskip
@@ -780,7 +784,7 @@ $f(x)$沿$y$轴上移$y_0$个单位长度得到$f(x)+y_0$,向下移动$y_0$个
\draw[-latex](-5,0) -- (5,0) node[below]{$x$};
\draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$};
\draw[black, thick, smooth, domain=-5:5] plot (\x,{sin(\x r)}) node[right]{$\sin(x)$};
\draw[blue, thick, smooth, domain=-5:5] plot (\x,{sin(\x/2 r)}) node[right]{$\sin(\frac{x}{2})$};
\draw[blue, thick, smooth, domain=-5:5] plot (\x,{sin(\x/2 r)}) node[right]{$\sin(\dfrac{x}{2})$};
\draw[brown, thick, smooth, domain=-5:5] plot (\x,{sin(\x*2 r)}) node[right]{$\sin(2x)$};
\filldraw[black] (0,0) node[below]{$O$};
\end{tikzpicture}
@@ -794,7 +798,7 @@ $f(x)$沿$y$轴上移$y_0$个单位长度得到$f(x)+y_0$,向下移动$y_0$个
\draw[-latex](-5,0) -- (5,0) node[below]{$x$};
\draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$};
\draw[black, thick, smooth, domain=-5:5] plot (\x,{sin(\x r)}) node[right]{$\sin(x)$};
\draw[blue, thick, smooth, domain=-5:5] plot (\x,{sin(\x r)/2}) node[right]{$\frac{sin(x)}{2}$};
\draw[blue, thick, smooth, domain=-5:5] plot (\x,{sin(\x r)/2}) node at(5.5,1){$\dfrac{sin(x)}{2}$};
\filldraw[black] (0,0) node[below]{$O$};
\end{tikzpicture}
@@ -808,7 +812,7 @@ $f(x)$沿$y$轴上移$y_0$个单位长度得到$f(x)+y_0$,向下移动$y_0$个
其中$r$为线的极径,$\theta$为极角,$a$为形状参数且$a>0$,周期为$2\pi$
在直角坐标系下表达式:$x^2+y^2+a*x=a\cdot\sqrt{x^2+y^2}$$x^2+y^2-a\cdot x=a\cdot\sqrt{x^2+y^2}$
在直角坐标系下表达式:$x^2+y^2+a\cdot x=a\cdot\sqrt{x^2+y^2}$$x^2+y^2-a\cdot x=a\cdot\sqrt{x^2+y^2}$
参数方程:$x=a\cdot(2\cdot\cos(t)-cos(2\cdot t))$$y=a\cdot(2\cdot\sin(t)-sin(2\cdot t))$
@@ -823,16 +827,16 @@ $f(x)$沿$y$轴上移$y_0$个单位长度得到$f(x)+y_0$,向下移动$y_0$个
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$\theta$ & $0$ & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$ & $\frac{2\pi}{3}$ & $\frac{3\pi}{4}$ & $\frac{5\pi}{6}$ & $\pi$ \\ \hline
$r$ & $0$ & $\frac{2-\sqrt{3}}{2}a$ & $\frac{2-\sqrt{2}}{2}a$ & $\frac{1}{2}a$ & $a$ & $\frac{3}{2}a$ & $\frac{2+\sqrt{2}}{2}a$ & $\frac{2+\sqrt{3}}{2}a$ & $2a$ \\
$\theta$ & $0$ & $\dfrac{\pi}{6}$ & $\dfrac{\pi}{4}$ & $\dfrac{\pi}{3}$ & $\dfrac{\pi}{2}$ & $\dfrac{2\pi}{3}$ & $\dfrac{3\pi}{4}$ & $\dfrac{5\pi}{6}$ & $\pi$ \\ \hline
$r$ & $0$ & $\dfrac{2-\sqrt{3}}{2}a$ & $\dfrac{2-\sqrt{2}}{2}a$ & $\dfrac{1}{2}a$ & $a$ & $\dfrac{3}{2}a$ & $\dfrac{2+\sqrt{2}}{2}a$ & $\dfrac{2+\sqrt{3}}{2}a$ & $2a$ \\
\hline
\end{tabular}
\paragraph{玫瑰线} \leavevmode \bigskip
表达式:$r=a\sin(n\theta)$,周期为$\frac{2\pi}{n}$
表达式:$r=a\sin(n\theta)$,周期为$\dfrac{2\pi}{n}$
$n$为3时为三叶2时为四叶$\frac{3}{2}$为六叶。三叶时周期为$\frac{2\pi}{3}$
$n$为3时为三叶2时为四叶$\dfrac{3}{2}$为六叶。三叶时周期为$\dfrac{2\pi}{3}$
直角坐标系下表达式:$x=a\cdot\sin(n\cdot\theta)\cdot\cos(\theta)$$y=a\cdot\sin(n\cdot)\cdot\sin(\theta)$
@@ -847,8 +851,8 @@ $f(x)$沿$y$轴上移$y_0$个单位长度得到$f(x)+y_0$,向下移动$y_0$个
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$\theta$ & $0$ & $\frac{\pi}{12}$ & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{5\pi}{12}$ & $\frac{\pi}{2}$ & $\frac{7\pi}{12}$ & $\frac{3\pi}{2}$ \\ \hline
$r$ & $0$ & $\frac{\sqrt{2}}{2}a$ & $a$ & $\frac{\sqrt{2}}{2}a$ & $0$ & $-frac{\sqrt{2}}{2}a$ & $-a$ & $-frac{\sqrt{2}}{2}a$ & $0$ \\
$\theta$ & $0$ & $\dfrac{\pi}{12}$ & $\dfrac{\pi}{6}$ & $\dfrac{\pi}{4}$ & $\dfrac{\pi}{3}$ & $\dfrac{5\pi}{12}$ & $\dfrac{\pi}{2}$ & $\dfrac{7\pi}{12}$ & $\dfrac{3\pi}{2}$ \\ \hline
$r$ & $0$ & $\dfrac{\sqrt{2}}{2}a$ & $a$ & $\dfrac{\sqrt{2}}{2}a$ & $0$ & $-frac{\sqrt{2}}{2}a$ & $-a$ & $-frac{\sqrt{2}}{2}a$ & $0$ \\
\hline
\end{tabular}
@@ -930,7 +934,7 @@ $$
\subsubsection{星形线(内摆线)}
与半径为$r$的定圆内切的半径为$\frac{r}{4}$的动圆沿定圆无滑动地滚动,动圆上一点的轨迹称为星形线。
与半径为$r$的定圆内切的半径为$\dfrac{r}{4}$的动圆沿定圆无滑动地滚动,动圆上一点的轨迹称为星形线。
$t$表示摆点与圆心的连线所构成夹角的弧度,其中$t\in[0,2\pi]$,得对应参数方程:
@@ -953,7 +957,7 @@ $$
通项公式:$a_n=a_1+(n-1)d$
$n$项和:$S_n=\frac{n}{2}[2a_1+(n-1)d]=\frac{n}{2}(a_1+a_n)$
$n$项和:$S_n=\dfrac{n}{2}[2a_1+(n-1)d]=\dfrac{n}{2}(a_1+a_n)$
\subsubsection{等比数列}
@@ -965,27 +969,27 @@ $$
\left\{
\begin{array}{lcl}
na_1, & & r=1 \\
\frac{a_1(1-r^n)}{1-r}, & & r\neq 1
\dfrac{a_1(1-r^n)}{1-r}, & & r\neq 1
\end{array}
\right.$
\right.$
若首项为1$1+r+r^2+\cdots+r^{n-1}=\frac{1-r^n}{1-r}(r\neq 1)$
若首项为1$1+r+r^2+\cdots+r^{n-1}=\dfrac{1-r^n}{1-r}(r\neq 1)$
则对无穷的极限为$\frac{1}{1-r}$
则对无穷的极限为$\dfrac{1}{1-r}$
\subsubsection{常见数列前$n$项和}
\begin{enumerate}
\item $\sum_{k=1}^nk=1+2+\cdots+n=\frac{n(n+1)}{2}$
\item $\sum_{k=1}^nk^2=1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$
\item $\sum_{k=1}^n\frac{1}{k(k+1)}=\frac{1}{1\times 2}+\frac{1}{2\times 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
\item $\sum_{k=1}^nk=1+2+\cdots+n=\dfrac{n(n+1)}{2}$
\item $\sum_{k=1}^nk^2=1^2+2^2+\cdots+n^2=\dfrac{n(n+1)(2n+1)}{6}$
\item $\sum_{k=1}^n\dfrac{1}{k(k+1)}=\dfrac{1}{1\times 2}+\dfrac{1}{2\times 3}+\cdots+\dfrac{1}{n(n+1)}=\dfrac{n}{n+1}$
\end{enumerate}
\subsection{三角函数}
\subsubsection{基本关系}
$\csc\alpha=\frac{1}{\sin\alpha},\sec\alpha=\frac{1}{\cos\alpha},\cot\alpha=\frac{1}{\tan\alpha},\tan\alpha=\frac{\sin\alpha}{\cos\alpha},\cot\alpha=\frac{\cos\alpha}{\sin\alpha}$
$\csc\alpha=\dfrac{1}{\sin\alpha},\sec\alpha=\dfrac{1}{\cos\alpha},\cot\alpha=\dfrac{1}{\tan\alpha},\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha},\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}$
$\sin^2\alpha+\cos^2\alpha=1,1+\tan^2\alpha=\sec^2\alpha,1+\cot^2\alpha=\csc^2\alpha$
@@ -993,13 +997,12 @@ $\sin^2\alpha+\cos^2\alpha=1,1+\tan^2\alpha=\sec^2\alpha,1+\cot^2\alpha=\csc^2\a
奇变偶不变,符号看象限。奇指前面添加的常数项是否为$\pi$的整数倍,是就需要改变函数,看象限指添加了常数后整体的符号看函数所在象限的符号。
$\sin(\frac{\pi}{2}\pm\alpha)=\cos\alpha$
$\cos(\frac{\pi}{2}\pm\alpha)=\mp\sin\alpha$
$\sin(\pi\pm\alpha)=\mp\sin\alpha$
$\cos(\pi\pm\alpha)=-\cos\alpha$
\begin{enumerate}
\item $\sin(\dfrac{\pi}{2}\pm\alpha)=\cos\alpha$
\item $\cos(\dfrac{\pi}{2}\pm\alpha)=\mp\sin\alpha$
\item $\sin(\pi\pm\alpha)=\mp\sin\alpha$
\item $\cos(\pi\pm\alpha)=-\cos\alpha$
\end{enumerate}
\subsubsection{倍角公式}
@@ -1007,12 +1010,250 @@ $\sin 2\alpha=2\sin\alpha\cos\alpha,\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\s
$\sin 3\alpha=-4\sin^3\alpha_3\sin\alpha,\cos 3\alpha=4\cos^3\alpha-3\cos\alpha$
$\tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha},\cot 2\alpha=\frac{\cot^2\alpha-1}{2\cot\alpha}$
$\tan 2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha},\cot 2\alpha=\dfrac{\cot^2\alpha-1}{2\cot\alpha}$
\subsubsection{半角公式}
$\sin^2\dfrac{\alpha}{2}=\dfrac{1}{2}(1-\cos\alpha),\cos^2\dfrac{\alpha}{2}=\dfrac{1}{2}(1+\cos\alpha)\text{(降幂公式)}$
$\sin\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-\cos\alpha}{2}},\cos\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1+\cos\alpha}{2}}$
$\tan\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha}{1+\cos\alpha}=\pm\sqrt{\dfrac{1-\cos\alpha}{1+\cos\alpha}}=\dfrac{1}{\cot\dfrac{\alpha}{2}}$
\subsubsection{和差公式}
$\sin$$\tan$的和差公式更容易考到。
$\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta,\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$
$\tan(\alpha\pm\beta)=\dfrac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta},\cot(\alpha\pm\beta)=\dfrac{\cot\alpha\cot\beta\mp 1}{\cot\beta\pm\cot\alpha}$
\subsubsection{积化和差公式}
和差化积与积化和差不需要背。
$\sin\alpha\cos\beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)],\cos\alpha\sin\beta=\dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)]$
$\cos\alpha\cos\beta=\dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)],\sin\alpha\sin\beta=\dfrac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]$
\subsubsection{和差化积公式}
$\sin\alpha+\sin\beta=2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2},\sin\alpha-\sin\beta=2\sin\dfrac{\alpha-\beta}{2}\cos\dfrac{\alpha+\beta}{2}$
$\cos\alpha+\cos\beta=2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2},\cos\alpha-\cos\beta=-2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}$
\subsubsection{万能公式}
一般不会用到。
$u=\tan\dfrac{x}{2}(-\pi<x<\pi)$,则$\sin x=\dfrac{2u}{1+u^2},\cos x=\dfrac{1-u^2}{1+u^2}$
\subsection{指数运算法则}
$a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\beta},(a^\alpha)^\beta=a^{\alpha\beta},(ab)^\alpha=a^\alpha b^\alpha,(\dfrac{a}{b})^\alpha=\dfrac{a^\alpha}{b^\alpha}$
其中$a$$b$为正实数,$\alpha$$\beta$为任意实数。
\subsection{对数运算法则}
重点:
\begin{enumerate}
\item $\log_a(MN)=\log_aM+\log_aN$(积的对数=对数的和)。
\item $\log_a(\dfrac{M}{N})=\log_aM-\log_aN$(商的对数=对数的差)。
\item $\log_aM^n=n\log_aM$(幂的对数=对数的倍数)。
\item $\log_a\sqrt[n]{M}=\dfrac{1}{n}\log_aM$
\end{enumerate}
所以以后多项相乘相除乘方开放都\textcolor{orange}{取对数}进行化简。
对于分数相减的对数先\textcolor{orange}{通分}再进行对数减法。
如下面这个题(先不要求能直接证明):
\textbf{例题4}证明$\dfrac{1}{x+1}<\ln(1+\dfrac{1}{x})<\dfrac{1}{x}$,其中$x>0$
首先因为证明中间项无法进行直接处理,又看到是一个对数,所以进行通分:$\ln(1+\dfrac{1}{x})=\ln\dfrac{x+1}{x}=\ln(x+1)-\ln x$
又因为是证明该中间式在一个区间,所以很明显会想到拉格朗日中值定理:$f(b)-f(a)=f'(\xi)(b-a)$
得到原式$=f'(\xi)=(\ln\xi)'=\dfrac{1}{\xi}$,又中值定理下$a<\xi<b$$x>0$,所以$\dfrac{1}{b}<\dfrac{1}{\xi}<\dfrac{1}{a}$,得到$0<\dfrac{1}{x+1}<\dfrac{1}{\xi}<\dfrac{1}{x}$
所以原式$\dfrac{1}{x+1}<\ln(1+\dfrac{1}{x})<\dfrac{1}{x}$成立。
\subsection{一元二次方程基础}
\begin{enumerate}
\item 基本格式为$ax^2+bx+c=0(a\neq 0)$
\item 如果$\Delta=\sqrt{b^2-4ac}\geqslant 0$,根的公式为$x_{1,2}=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$其中如果等于0为唯一实根如果大于0为二重实根如果$\Delta<0$则得到共轭复数根$-\dfrac{b}{2a}\pm\dfrac{\sqrt{4ac-b^2}}{2a}i$
\item 根与系数的关系(韦达定理)为$x_1+x_2=-\dfrac{b}{a},x_1x_2=\dfrac{c}{a}$
\item 抛物线顶点为$(-\dfrac{b}{2a},c-\dfrac{b^2}{4a})$
\end{enumerate}
\subsection{因式分解公式}
重点为3、4、7和11的公式。
\begin{enumerate}
\item $(a+b)^2=a^2+2ab+b^2$
\item $(a-b)^2=a^2-2ab+b^2$
\item $(a+b)^3=a^3+3a^2b+3ab^2+b^3$
\item $(a-b)^3=a^3-3a^2b+3ab^2-b^3$
\item $a^2-b^2=(a+b)(a-b)$
\item $a^3-b^3=(a-b)(a^2+ab+b^2)$
\item $a^3+b^3=(a+b)(a^2-ab+b^2)$
\item $n$为正整数时,$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1})$
\item $n$为正偶数时,$a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+\cdots+ab^{n-2}-b^{n-1})$
\item $n$为正奇数时,$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+\cdots-ab^{n-2}+b^{n-1})$
\item 二项式定理$(a+b)^n=\sum_{k=0}^nC_n^ka^{n-k}b^k=a^n+na^{n-1}b+\dfrac{n(n-1)}{2!}a^{n-2}b^2+\cdots+\dfrac{n(n-1)\cdots(n-k+1)}{k!}a^{n-k}b^k+\cdots+nab^{n-1}+b^n$
\end{enumerate}
对于二项式定理需要记忆,后面的幂比较简单,而前面的系数比较困难,可以使用杨辉三角形来记忆:
\begin{tikzpicture}[scale=0.9]
\node[black] at (0,0) {$C_0^0$};
\node[black] at (-1,-1) {$C_1^0$};
\node[black] at (0,-1) {$C_1^1$};
\node[black] at (-2,-2) {$C_2^0$};
\node[black] at (-1,-2) {$C_2^1$};
\node[black] at (-0,-2) {$C_2^2$};
\node[black] at (-3,-3) {$C_3^0$};
\node[black] at (-2,-3) {$C_3^1$};
\node[black] at (-1,-3) {$C_3^2$};
\node[black] at (-0,-3) {$C_3^3$};
\node[black] at (-4,-4) {$C_4^0$};
\node[black] at (-3,-4) {$C_4^1$};
\node[black] at (-2,-4) {$C_4^2$};
\node[black] at (-1,-4) {$C_4^3$};
\node[black] at (-0,-4) {$C_4^4$};
\end{tikzpicture}
\hspace{2.5em}
\begin{tikzpicture}[scale=0.9]
\node[black] (0) at (0,0) {1};
\node[black] (1) at (-1,-1) {1};
\node[black] (2) at (1,-1) {1};
\node[black] (3) at (-2,-2) {1};
\node[black] (4) at (0,-2) {2};
\node[black] (5) at (2,-2) {1};
\node[black] (6) at (-3,-3) {1};
\node[black] (7) at (-1,-3) {3};
\node[black] (8) at (1,-3) {3};
\node[black] (9) at (3,-3) {1};
\node[black] (10) at (-4,-4) {1};
\node[black] (11) at (-2,-4) {4};
\node[black] (12) at (0,-4) {6};
\node[black] (13) at (2,-4) {4};
\node[black] (14) at (4,-4) {1};
\draw[-,thick] (0) to (1);
\draw[-,thick] (0) to (2);
\draw[-,thick] (1) to (3);
\draw[-,thick] (1) to (4);
\draw[-,thick] (2) to (4);
\draw[-,thick] (2) to (5);
\draw[-,thick] (3) to (6);
\draw[-,thick] (3) to (7);
\draw[-,thick] (4) to (7);
\draw[-,thick] (4) to (8);
\draw[-,thick] (5) to (8);
\draw[-,thick] (5) to (9);
\draw[-,thick] (6) to (10);
\draw[-,thick] (6) to (11);
\draw[-,thick] (7) to (11);
\draw[-,thick] (7) to (12);
\draw[-,thick] (8) to (12);
\draw[-,thick] (8) to (13);
\draw[-,thick] (9) to (13);
\draw[-,thick] (9) to (14);
\end{tikzpicture}
\subsection{阶乘与双阶乘}
\begin{enumerate}
\item $n!=1\times 2\times 3\times\cdots\times n$,其中$0!=1$
\item $(2n)!!=2\times 4\times 6\times\cdots\times(2n)=2^n\cdot n!$
\item $(2n-1)!!=1\times 3\times 5\times\cdots\times(2n-1)$
\end{enumerate}
以后的华里士公式(点火公式)会使用到,如下面的题目:
\textbf{例题5}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\rm{d}x$$\int_0^{\frac{\pi}{2}}\cos^9x\rm{d}x$
原式1为偶数次幂所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$
原式2为奇数次幂所以$=\dfrac{8}{9}\cdot\dfrac{6}{7}\cdot\dfrac{4}{5}\cdot\dfrac{2}{3}=\dfrac{8!!}{9!!}$
\subsection{常用不等式}
非常重要。
\subsubsection{绝对值不等式}
$a$$b$为实数,则:
\begin{enumerate}
\item $\vert a\pm b\vert\leqslant\vert a\vert+\vert b\vert$
\item 推广公式一到离散区间:$\vert a_1\pm a_2\pm a_3\pm\cdots\pm a_n\vert\leqslant\vert a_1\vert+\vert a_2\vert+\cdots+\vert a_n\vert$
\item 推广公式一到连续区间且$f(x)$$[a,b](a<b)$上可积:$\vert\int_a^bf(x)\rm{d}x\vert\leqslant\int_a^b\vert f(x)\vert\rm{d}x$。因为符号不一定相同的面积代数和一定小于同为正的面积代数和。
\item $\vert\vert a\vert-\vert b\vert\vert\leqslant\vert a-b\vert$
\end{enumerate}
\subsubsection{根号不等式}
公式一非常重要,即二分之一的算数平均大几何平均。
$a,b,c>0$
\begin{enumerate}
\item $\sqrt{ab}\leqslant\dfrac{a+b}{2}\leqslant\sqrt{\dfrac{a^2+b^2}{2}}$
\item $\sqrt[3]{abc}\leqslant\dfrac{a+b+c}{3}\leqslant\dfrac{a^2+b^2+c^2}{3}$
\end{enumerate}
\textbf{例题6}证明函数$f(x)=\dfrac{x}{1+x^2}$$(-\infty,+\infty)$内有界。
可以使用极限,若极限存在则函数有界,这里使用有界性定义与不等式来完成。
\textcircled{1}$x=0$时,$f(0)=\dfrac{0}{1}$,有界。
\textcircled{2}$x\neq 0$时,原式分式上下都有$x$,所以简化公式:$f(x)=\dfrac{\dfrac{x}{x}}{\dfrac{1+x^2}{x}}=\dfrac{1}{\dfrac{1}{x}+x}$
$\because$需要证明有界性以及根号不等式下需要参数大于0所以需要证明$\vert f(x)\vert=\dfrac{1}{\dfrac{1}{\vert x\vert}+\vert x\vert}\leqslant M$
$\because\dfrac{a+b}{2}\geqslant\sqrt{ab}$$\therefore \dfrac{\dfrac{1}{\vert x\vert}+\vert x\vert}{2}\geqslant\sqrt{\dfrac{1}{\vert x\vert}\cdot\vert x\vert}=1$
$\therefore\vert f(x)\vert=\dfrac{1}{\dfrac{1}{\vert x\vert}+\vert x\vert}\leqslant\dfrac{1}{2}$
故整个函数在$R$上有界。
\subsubsection{指数不等式}
$a>b>0$,则$
\left\{
\begin{array}{lcl}
a^n>b^n, & & \text{}n>0\text{} \\
a^n<b^n, & & \text{}n<0\text{}
\end{array}
\right.$
$e^x\geqslant x+1(\forall x)$
\subsubsection{分数不等式}
$0<a<x<b,0<c<y<d$,则$\dfrac{c}{b}<\dfrac{y}{x}<\dfrac{d}{a}$
\subsubsection{三角不等式}
\begin{enumerate}
\item $\sin x<x<\tan x(0<x<\dfrac{\pi}{2})$
\item $\sin x<x(x>0)$
\item $\arctan x\leqslant x\leqslant\arcsin x(0\leqslant x\leqslant 1)$
\end{enumerate}
\subsubsection{对数不等式}
\begin{enumerate}
\item $x-1\geqslant\ln x(x>0)$
\item $\dfrac{1}{1+x}<\ln(1+\dfrac{1}{x})<\dfrac{1}{x}(x>0)$
\end{enumerate}
\end{document}