mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-08 13:05:36 +08:00
更新
This commit is contained in:
Binary file not shown.
@@ -0,0 +1,63 @@
|
||||
\documentclass[UTF8, 12pt]{ctexart}
|
||||
% UTF8编码,ctexart现实中文
|
||||
\usepackage{color}
|
||||
% 使用颜色
|
||||
\usepackage{geometry}
|
||||
\setcounter{tocdepth}{4}
|
||||
\setcounter{secnumdepth}{4}
|
||||
% 设置四级目录与标题
|
||||
\geometry{papersize={21cm,29.7cm}}
|
||||
% 默认大小为A4
|
||||
\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm}
|
||||
% 默认页边距为1英尺与1.25英尺
|
||||
\usepackage{indentfirst}
|
||||
\setlength{\parindent}{2.45em}
|
||||
% 首行缩进2个中文字符
|
||||
\usepackage{setspace}
|
||||
\renewcommand{\baselinestretch}{1.5}
|
||||
% 1.5倍行距
|
||||
\usepackage{amssymb}
|
||||
% 因为所以
|
||||
\usepackage{amsmath}
|
||||
% 数学公式
|
||||
\usepackage[colorlinks,linkcolor=black,urlcolor=blue]{hyperref}
|
||||
% 超链接
|
||||
\author{Didnelpsun}
|
||||
\title{多元函数积分学}
|
||||
\date{}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\pagestyle{empty}
|
||||
\thispagestyle{empty}
|
||||
\tableofcontents
|
||||
\thispagestyle{empty}
|
||||
\newpage
|
||||
\pagestyle{plain}
|
||||
\setcounter{page}{1}
|
||||
\section{二重积分}
|
||||
|
||||
\subsection{交换积分次序}
|
||||
|
||||
\subsubsection{直角坐标系}
|
||||
|
||||
\textbf{例题:}交换积分次序$\int_0^1\textrm{d}x\int_0^{x^2}f(x,y)\,\textrm{d}y+\int_1^3\textrm{d}x\int_0^{\frac{1}{2}(3-x)}f(x,y)\,\textrm{d}y$。
|
||||
|
||||
解:已知积分区域分为两个部分。将$X$型变为$Y$型。画出图形可以知道$y\in(0,1)$,$x$的上下限由$y=x^2$和$y=\dfrac{1}{2}(3-x)$转化为$\sqrt{y}$和$3-2y$。
|
||||
|
||||
所以转换为$\int_0^1\textrm{d}y\int_{\sqrt{y}}^{3-2y}f(x,y)\,\textrm{d}x$。
|
||||
|
||||
\subsubsection{极坐标系}
|
||||
|
||||
\subsection{极直互化}
|
||||
|
||||
\textbf{例题:}将$I=\int_0^{\frac{\sqrt{2}}{2}R}e^{-y^2}\textrm{d}y\int_0^ye^{-x^2}\,\textrm{d}x+\int_{\frac{\sqrt{2}}{2}R}^Re^{-y^2}\,\textrm{d}y\int_0^{\sqrt{R^2-y^2}}e^{-x^2}\,\textrm{d}x$转换为极坐标系并计算结果。
|
||||
|
||||
解:首先根据积分上下限得到积分区域$D=\left\{0\leqslant y\leqslant\dfrac{\sqrt{2}}{2}R,0\leqslant x\leqslant y\right\}\cup\left\{\dfrac{\sqrt{2}}{2}R\leqslant y\leqslant R,0\leqslant x\leqslant\sqrt{R^2-y^2}\right\}$,$D$为一个八分之一圆的扇形。
|
||||
|
||||
根据$x=r\cos\theta$,$y=r\sin\theta$替换得到$D=\left\{(x,y)\bigg|0\leqslant r\leqslant R,\dfrac{\pi}{4}\leqslant\theta\leqslant\dfrac{\pi}{2}\right\}$。
|
||||
|
||||
又$e^{-y^2}\cdot e^{-x^2}=e^{-(x^2+y^2)}=e^{-r^2}$。
|
||||
|
||||
$\therefore I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\textrm{d}\theta\int_0^Re^{-r^2}r\,\textrm{d}r$。
|
||||
|
||||
\end{document}
|
||||
Binary file not shown.
@@ -182,7 +182,7 @@ $\therefore2I=\displaystyle{\iint\limits_D\dfrac{a\sqrt{f(x)}+b\sqrt{f(y)}}{\sqr
|
||||
|
||||
$\therefore2I=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\displaystyle{\iint\limits_D(x^2+y^2)\textrm{d}x\textrm{d}y}$,$\therefore I=\dfrac{1}{2}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\displaystyle{\iint\limits_D(x^2+y^2)\textrm{d}\sigma}$。
|
||||
|
||||
根据公式三转换为极坐标系:$I=\dfrac{1}{2}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\int_0^{2\pi}\textrm{d}\theta\int)^Rr^2r\,\textrm{d}r$。
|
||||
根据公式三转换为极坐标系:$I=\dfrac{1}{2}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\int_0^{2\pi}\textrm{d}\theta\int_0^Rr^2r\,\textrm{d}r$。
|
||||
|
||||
即$I=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\dfrac{\pi R^4}{4}$。
|
||||
|
||||
|
||||
Binary file not shown.
@@ -265,4 +265,24 @@ $\therefore AP=PB$,$P^{-1}AP=B$,$A\sim B$。
|
||||
|
||||
\subsection{正交相似}
|
||||
|
||||
\textbf{例题:}已知$A$是三阶实对称矩阵,若正交矩阵$Q$使得$Q^{-1}AQ=\left[\begin{array}{ccc}
|
||||
3 & 0 & 0 \\
|
||||
0 & 3 & 0 \\
|
||||
0 & 0 & 6
|
||||
\end{array}\right]$,如果$\alpha_1=(1,0,-1)^T$和$\alpha_2=(0,1,1)^T$是矩阵$A$属于特征值$\lambda=3$的特征向量,求$Q$。
|
||||
|
||||
解:首先由正交矩阵就可以知道各特征值正交。令$\alpha_3=(x_1,x_2,x_3)^T$。对应的$\lambda_3=6$。
|
||||
|
||||
$\alpha_3^T\alpha_1=x_1-x_3=0$,$\alpha_3^T\alpha_2=x_2+x_3=0$,求$\lambda_3$的特征值,则不如令$x_3=1$,则解得$\alpha_3=(1,-1,1)^T$。
|
||||
|
||||
这样$Q=\left[\begin{array}{ccc}
|
||||
1 & 0 & 1 \\
|
||||
0 & 1 & -1 \\
|
||||
-1 & 1 & 1
|
||||
\end{array}\right]$,还需要将$Q$正交单位化。可知$\alpha_3$根据正交规律求出来,一定是正交的,而$\alpha_1^T\alpha_2=-1\neq0$所以需要正交。
|
||||
|
||||
令$\beta_1=\alpha_1=(1,0,-1)^T$,$\beta_2=\alpha_2-\dfrac{<\alpha_2,\beta_1>}{<\beta_1,\beta_1>}\beta_1=(0,1,1)^T+\dfrac{1}{2}(1,0,-1)^T=(\dfrac{1}{2},1,\dfrac{1}{2})^T$。
|
||||
|
||||
最后对整个$Q$进行单位化:$\gamma_1=\dfrac{1}{\sqrt{2}}(1,0,-1)^T$,$\gamma_2=\dfrac{1}{\sqrt{6}}(1,2,1)^T$,$\gamma_3=\dfrac{1}{\sqrt{3}}(1,-1,1)^T$。
|
||||
|
||||
\end{document}
|
||||
|
||||
BIN
linear-algebra/exercise/6-quadratic-form/quadratic-form.pdf
Normal file
BIN
linear-algebra/exercise/6-quadratic-form/quadratic-form.pdf
Normal file
Binary file not shown.
38
linear-algebra/exercise/6-quadratic-form/quadratic-form.tex
Normal file
38
linear-algebra/exercise/6-quadratic-form/quadratic-form.tex
Normal file
@@ -0,0 +1,38 @@
|
||||
\documentclass[UTF8, 12pt]{ctexart}
|
||||
% UTF8编码,ctexart现实中文
|
||||
\usepackage{color}
|
||||
% 使用颜色
|
||||
\usepackage{geometry}
|
||||
\setcounter{tocdepth}{4}
|
||||
\setcounter{secnumdepth}{4}
|
||||
% 设置四级目录与标题
|
||||
\geometry{papersize={21cm,29.7cm}}
|
||||
% 默认大小为A4
|
||||
\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm}
|
||||
% 默认页边距为1英尺与1.25英尺
|
||||
\usepackage{indentfirst}
|
||||
\setlength{\parindent}{2.45em}
|
||||
% 首行缩进2个中文字符
|
||||
\usepackage{setspace}
|
||||
\renewcommand{\baselinestretch}{1.5}
|
||||
% 1.5倍行距
|
||||
\usepackage{amssymb}
|
||||
% 因为所以
|
||||
\usepackage{amsmath}
|
||||
% 数学公式
|
||||
\usepackage[colorlinks,linkcolor=black,urlcolor=blue]{hyperref}
|
||||
% 超链接
|
||||
\author{Didnelpsun}
|
||||
\title{二次型}
|
||||
\date{}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\pagestyle{empty}
|
||||
\thispagestyle{empty}
|
||||
\tableofcontents
|
||||
\thispagestyle{empty}
|
||||
\newpage
|
||||
\pagestyle{plain}
|
||||
\setcounter{page}{1}
|
||||
\section{正定二次型}
|
||||
\end{document}
|
||||
Binary file not shown.
@@ -286,6 +286,18 @@ $\therefore\lambda_1=\lambda_2=1$,$\lambda_3=10$。
|
||||
|
||||
所以内积是一个数值。
|
||||
|
||||
单位化是保持向量方向不变,将其长度化为1。
|
||||
|
||||
正交化是指将线性无关向量系转化为正交系的过程。
|
||||
|
||||
\subsubsection{施密特正交化}
|
||||
|
||||
将一个线性无关向量组变为一个标准正交向量组。
|
||||
|
||||
对于线性无关向量组$\alpha_1,\alpha_2,\cdots,\alpha_n$,令$\beta_1=\alpha_1$,$\beta_2=\alpha_2-\dfrac{<\alpha_2,\beta_1>}{<\beta_1,\beta_1>}\beta_1$,$\beta_3=\alpha_3-\dfrac{<\alpha_3,\beta_1>}{<\beta_1,\beta_1}\beta_1-\dfrac{<\alpha_3,\beta_2>}{<\beta_2,\beta_2>}\beta_2$,$\cdots$,$\beta_n=\alpha_n-\dfrac{<\alpha_n,\beta_1>}{<\beta_1,\beta_1>}\beta_1-\dfrac{<\alpha_n,\beta_2>}{<\beta_2,\beta_2>}\beta_2-\cdots-\dfrac{<\alpha_n,\beta_{n-1}}{<\beta_{n-1},\beta_{n-1}>}\beta_{n-1}$。其中$<n,n>$代表$n,n$的内积。
|
||||
|
||||
最后单位化:$\gamma_i=\dfrac{\beta_i}{\Vert\beta_i\Vert}$。
|
||||
|
||||
\subsubsection{定义}
|
||||
|
||||
\textcolor{violet}{\textbf{定义:}}$A^T=A$则$A$就是对称矩阵,若$A$的元素都是实数,则$A$是实对称矩阵。
|
||||
|
||||
Reference in New Issue
Block a user