mirror of
https://github.com/Didnelpsun/Math.git
synced 2026-02-12 06:45:44 +08:00
更新
This commit is contained in:
Binary file not shown.
@@ -1054,7 +1054,7 @@ $\therefore I_n=n!$。
|
||||
\item 若只存在$\rho=1$,使得$\lim\limits_{x\to+\infty}xf(x)=c>0$或为$-\infty$,则积分发散。
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection*{无界函数}
|
||||
\subsubsection{无界函数}
|
||||
|
||||
对于瑕积分$\int_a^bf(x)\,\textrm{d}x$,其中$a$为瑕点,$f(x)$在$[a,b]$上连续非负,对于常数$\rho$:
|
||||
|
||||
|
||||
Binary file not shown.
@@ -773,6 +773,10 @@ $\overline{x}=\dfrac{\int_\alpha^\beta x(t)\sqrt{x'^2(t)+y'^2(t)}\textrm{d}t}{\i
|
||||
|
||||
$\overline{y}=\dfrac{\int_\alpha^\beta y(t)\sqrt{x'^2(t)+y'^2(t)}\textrm{d}t}{\int_\alpha^\beta\sqrt{x'^2(t)+y'^2(t)}\textrm{d}t}$。
|
||||
|
||||
设质量分布不均的光滑物体曲线$\overset{\frown}{AB}$,区间为$[\alpha,\beta]$,线密度为$\rho(x)$。
|
||||
|
||||
$\overline{x}=\dfrac{\int_\alpha^\beta x\rho(x)\,\textrm{d}x}{\int_\alpha^\beta\rho(x)\,\textrm{d}x}$。
|
||||
|
||||
\paragraph{平面} \leavevmode \medskip
|
||||
|
||||
设曲边梯形平面区域$D=\{(x,y)|0\leqslant y\leqslant f(x),a\leqslant x\leqslant b\}$,$f(x)$在$[a,b]$上连续,则平面$D$的形心坐标计算公式为:\medskip
|
||||
|
||||
Reference in New Issue
Block a user