Merge pull request #33 from jiangzhonglian/master

更新完AdaBoost算法核心代码
This commit is contained in:
ApacheCN
2017-03-14 23:29:56 +08:00
committed by GitHub
3 changed files with 310 additions and 21 deletions

View File

@@ -0,0 +1,30 @@
# 7) 利用AdaBoost元算法提高分类
* 元算法(meta-algorithm) 或 集成方法(ensemble method)
* 概念:是对其他算法进行组合的一种形式。
* 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。
机器学习处理问题时又何尝不是如此? 这就是元算法(meta-algorithm)背后的思想。
* AdaBoost(adaptive boosting: 自适应boosting)
* 能否使用弱分类器和多个实例来构建一个强分类器? 这是一个非常有趣的理论问题。
* 优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调节。
* 缺点:对离群点敏感。
* 适用数据类型:数值型和标称型数据。
* bagging基于数据随机重抽样的分类起构造方法
* 自举汇聚法(bootstrap aggregating)也称为bagging方法是在从原始数据集选择S次后得到S个新数据集的一种技术。
* 1. 新数据集和原数据集的大小相等。
* 2. 每个数据集都是通过在原始数据集中随机选择一个样本来进行替换(替换:意味着可以多次选择同一个样本,也就有重复值)而得到的。
* 3. 该算法作用的数据集就会得到S个分类器与此同时选择分类器投票结果中最多的类别作为最后的分类结果。
* 4. 例如:随即森林(random forest)
* boosting
* boosting是一种与bagging很类似的技术。不论是boosting还是bagging当中所使用的多个分类器的类型都是一致的。
* 区别是什么?
* 1. bagging不同的分类器是通过串形训练而获得的每个新分类器斗根据已训练出的分类器的性能来进行训练。
* 2. boosting是通过集中关注被已有分类器错分的那些数据来获得新的分类器。
* 3. 由于boosting分类的结果是基于所有分类器的加权求和结果的因此boosting与bagging不太一样。
* 4. bagging中的分类器权重是相等的而boosting中的分类器权重并不相等每个权重代表的是其对应分类器在上一轮迭代中的成功度。
* 目前boosting方法最流行的版本是 AdaBoost。
* AdaBoost的一般流程
* 训练算法: 基于错误提升分类器的性能
* 基于单层决策树构建弱分类器
* 单层决策树(decision stump, 也称决策树桩)是一种简单的决策树。

View File

@@ -0,0 +1,204 @@
#!/usr/bin/python
# coding:utf8
'''
Created on Nov 28, 2010
Adaboost is short for Adaptive Boosting
@author: Peter/jiangzhonglian
'''
from numpy import *
def loadSimpData():
""" 测试数据
Returns:
dataArr feature对应的数据集
labelArr feature对应的分类标签
"""
dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])
labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]
return dataArr, labelArr
def stumpClassify(dataMat, dimen, threshVal, threshIneq):
"""stumpClassify(将数据集按照feature列的value进行 二元切分比较来赋值)
Args:
dataMat Matrix数据集
dimen 特征列
threshVal 特征列要比较的值
Returns:
retArray 结果集
"""
retArray = ones((shape(dataMat)[0], 1))
# dataMat[:, dimen] 表示数据集中第dimen列的所有值
# print '-----', threshIneq, dataMat[:, dimen], threshVal
if threshIneq == 'lt':
retArray[dataMat[:, dimen] <= threshVal] = -1.0
else:
retArray[dataMat[:, dimen] > threshVal] = -1.0
return retArray
def buildStump(dataArr, labelArr, D):
# 转换数据
dataMat = mat(dataArr)
labelMat = mat(labelArr).T
# m行 n列
m, n = shape(dataMat)
# 初始化数据
numSteps = 10.0
bestStump = {}
bestClasEst = mat(zeros((m, 1)))
# 初始化的最小误差为无穷大
minError = inf
# 循环所有的feature列
for i in range(n):
rangeMin = dataMat[:, i].min()
rangeMax = dataMat[:, i].max()
# print 'rangeMin=%s, rangeMax=%s' % (rangeMin, rangeMax)
# 计算每一份的元素个数
stepSize = (rangeMax-rangeMin)/numSteps
# 分成-1numSteps= 1+numSteps份, 加本身是需要+1的
for j in range(-1, int(numSteps)+1):
# go over less than and greater than
for inequal in ['lt', 'gt']:
# 如果是-1那么得到rangeMin-stepSize; 如果是numSteps那么得到rangeMax
threshVal = (rangeMin + float(j) * stepSize)
# 对单层决策树进行简单分类
predictedVals = stumpClassify(dataMat, i, threshVal, inequal)
# print predictedVals
errArr = mat(ones((m, 1)))
# 正确为0错误为1
errArr[predictedVals == labelMat] = 0
# 计算 平均每个特征的概率0.2*错误概率的总和为多少,就知道错误率多高
# calc total error multiplied by D
weightedError = D.T*errArr
'''
dim 表示 feature列
threshVal 表示树的分界值
inequal 表示计算树左右颠倒的错误率的情况
weightedError 表示整体结果的错误率
'''
# print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrainDS(dataArr, labelArr, numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
# 初始化 init D to all equal
D = mat(ones((m, 1))/m)
aggClassEst = mat(zeros((m, 1)))
for i in range(numIt):
# build Stump
bestStump, error, classEst = buildStump(dataArr, labelArr, D)
# print "D:", D.T
# calc alpha, throw in max(error,eps) to account for error=0
alpha = float(0.5*log((1.0-error)/max(error, 1e-16)))
bestStump['alpha'] = alpha
# store Stump Params in Array
weakClassArr.append(bestStump)
# print "alpha=%s, classEst=%s, bestStump=%s, error=%s " % (alpha, classEst.T, bestStump, error)
# -1主要是下面求e的-alpha次方 如果判断正确乘积为1否则为-1这样就可以算出分类的情况了
expon = multiply(-1*alpha*mat(labelArr).T, classEst)
# print 'expon=', -1*alpha*mat(labelArr).T, classEst, expon
# 计算e的expon次方然后计算得到一个综合的概率的值
# 结果发现: 正确的alpha的权重值变小了错误的变大了。也就说D里面分类的权重值变了。可以举例验证假设alpha=0.6,什么的)
D = multiply(D, exp(expon))
D = D/D.sum()
print "D: ", D.T
# 计算分类结果的值,在上一轮结果的基础上,进行加和操作
# calc training error of all classifiers, if this is 0 quit for loop early (use break)
aggClassEst += alpha*classEst
print "aggClassEst: ", aggClassEst.T
# sign 判断正为1 0为0 负为-1通过最终加和的权重值判断符号。
# 结果为:错误的样本标签集合,因为是 !=,那么结果就是0 正, 1 负
aggErrors = multiply(sign(aggClassEst) != mat(labelArr).T, ones((m, 1)))
errorRate = aggErrors.sum()/m
print "total error=%s " % (errorRate)
if errorRate == 0.0:
break
return weakClassArr, aggClassEst
if __name__ == "__main__":
dataArr, labelArr = loadSimpData()
print '-----\n', dataArr, '\n', labelArr
# D表示最初对1进行均分为5份平均每一个初始的概率都为0.2
D = mat(ones((5, 1))/5)
# print '-----', D
# print buildStump(dataArr, labelArr, D)
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, labelArr, 9)
print weakClassArr
def loadDataSet(fileName): #general function to parse tab -delimited floats
numFeat = len(open(fileName).readline().split('\t')) #get number of fields
dataArr = []
labelArr = []
fr = open(fileName)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat-1):
lineArr.append(float(curLine[i]))
dataArr.append(lineArr)
labelArr.append(float(curLine[-1]))
return dataArr, labelArr
def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m,1)))
for i in range(len(classifierArr)):
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
classifierArr[i]['thresh'],\
classifierArr[i]['ineq'])#call stump classify
aggClassEst += classifierArr[i]['alpha']*classEst
print aggClassEst
return sign(aggClassEst)
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) #cursor
ySum = 0.0 #variable to calculate AUC
numPosClas = sum(array(classLabels)==1.0)
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
#loop through all the values, drawing a line segment at each point
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
#draw line from cur to (cur[0]-delX,cur[1]-delY)
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep

View File

@@ -1,50 +1,105 @@
#!/usr/bin/python
# coding:utf8
# '''
# Created on 2017-03-10
# Update on 2017-03-10
# author: jiangzhonglian
# content: 回归树
# '''
# print(__doc__)
# # Import the necessary modules and libraries
# import numpy as np
# from sklearn.tree import DecisionTreeRegressor
# import matplotlib.pyplot as plt
# # Create a random dataset
# rng = np.random.RandomState(1)
# X = np.sort(5 * rng.rand(80, 1), axis=0)
# y = np.sin(X).ravel()
# print X, '\n\n\n-----------\n\n\n', y
# y[::5] += 3 * (0.5 - rng.rand(16))
# # Fit regression model
# regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5)
# regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5)
# regr_1.fit(X, y)
# regr_2.fit(X, y)
# # Predict
# X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
# y_1 = regr_1.predict(X_test)
# y_2 = regr_2.predict(X_test)
# # Plot the results
# plt.figure()
# plt.scatter(X, y, c="darkorange", label="data")
# plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
# plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
# plt.xlabel("data")
# plt.ylabel("target")
# plt.title("Decision Tree Regression")
# plt.legend()
# plt.show()
'''
Created on 2017-03-10
Update on 2017-03-10
author: jiangzhonglian
content: 回归
content: 模型
'''
print(__doc__)
# Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause
# Import the necessary modules and libraries
# importing necessary libraries
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
# Create a random dataset
# Create the dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
print X, '\n\n\n-----------\n\n\n', y
y[::5] += 3 * (0.5 - rng.rand(16))
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])
# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5)
regr_2 = DecisionTreeRegressor(max_depth=5, min_samples_leaf=5)
regr_1 = DecisionTreeRegressor(max_depth=4)
regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng)
regr_1.fit(X, y)
regr_2.fit(X, y)
# Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X)
# Plot the results
plt.figure()
plt.scatter(X, y, c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()