Files
ailearning/docs/da/007.md
2020-10-27 17:22:20 +08:00

1014 lines
31 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Python 入门演示
## 简单的数学运算
整数相加,得到整数:
In [1]:
```py
2 + 2
```
Out[1]:
```py
4
```
浮点数相加,得到浮点数:
In [2]:
```py
2.0 + 2.5
```
Out[2]:
```py
4.5
```
整数和浮点数相加,得到浮点数:
In [3]:
```py
2 + 2.5
```
Out[3]:
```py
4.5
```
## 变量赋值
**Python**使用`<变量名>=<表达式>`的方式对变量进行赋值
In [4]:
```py
a = 0.2
```
## 字符串 String
字符串的生成,单引号与双引号是等价的:
In [5]:
```py
s = "hello world"
s
```
Out[5]:
```py
'hello world'
```
In [6]:
```py
s = 'hello world'
s
```
Out[6]:
```py
'hello world'
```
三引号用来输入包含多行文字的字符串:
In [7]:
```py
s = """hello
world"""
print s
```
```py
hello
world
```
In [8]:
```py
s = '''hello
world'''
print s
```
```py
hello
world
```
字符串的加法:
In [9]:
```py
s = "hello" + " world"
s
```
Out[9]:
```py
'hello world'
```
字符串索引:
In [10]:
```py
s[0]
```
Out[10]:
```py
'h'
```
In [11]:
```py
s[-1]
```
Out[11]:
```py
'd'
```
In [12]:
```py
s[0:5]
```
Out[12]:
```py
'hello'
```
字符串的分割:
In [13]:
```py
s = "hello world"
s.split()
```
Out[13]:
```py
['hello', 'world']
```
查看字符串的长度:
In [14]:
```py
len(s)
```
Out[14]:
```py
11
```
## 列表 List
Python用`[]`来生成列表
In [15]:
```py
a = [1, 2.0, 'hello', 5 + 1.0]
a
```
Out[15]:
```py
[1, 2.0, 'hello', 6.0]
```
列表加法:
In [16]:
```py
a + a
```
Out[16]:
```py
[1, 2.0, 'hello', 6.0, 1, 2.0, 'hello', 6.0]
```
列表索引:
In [17]:
```py
a[1]
```
Out[17]:
```py
2.0
```
列表长度:
In [18]:
```py
len(a)
```
Out[18]:
```py
4
```
向列表中添加元素:
In [19]:
```py
a.append("world")
a
```
Out[19]:
```py
[1, 2.0, 'hello', 6.0, 'world']
```
## 集合 Set
Python用{}来生成集合,集合中不含有相同元素。
In [20]:
```py
s = {2, 3, 4, 2}
s
```
Out[20]:
```py
{2, 3, 4}
```
集合的长度:
In [21]:
```py
len(s)
```
Out[21]:
```py
3
```
向集合中添加元素:
In [22]:
```py
s.add(1)
s
```
Out[22]:
```py
{1, 2, 3, 4}
```
集合的交:
In [23]:
```py
a = {1, 2, 3, 4}
b = {2, 3, 4, 5}
a & b
```
Out[23]:
```py
{2, 3, 4}
```
并:
In [24]:
```py
a | b
```
Out[24]:
```py
{1, 2, 3, 4, 5}
```
差:
In [25]:
```py
a - b
```
Out[25]:
```py
{1}
```
对称差:
In [26]:
```py
a ^ b
```
Out[26]:
```py
{1, 5}
```
## 字典 Dictionary
Python用`{key:value}`来生成Dictionary。
In [27]:
```py
d = {'dogs':5, 'cats':4}
d
```
Out[27]:
```py
{'cats': 4, 'dogs': 5}
```
字典的大小
In [28]:
```py
len(d)
```
Out[28]:
```py
2
```
查看字典某个键对应的值:
In [29]:
```py
d["dogs"]
```
Out[29]:
```py
5
```
修改键值:
In [30]:
```py
d["dogs"] = 2
d
```
Out[30]:
```py
{'cats': 4, 'dogs': 2}
```
插入键值:
In [31]:
```py
d["pigs"] = 7
d
```
Out[31]:
```py
{'cats': 4, 'dogs': 2, 'pigs': 7}
```
所有的键:
In [32]:
```py
d.keys()
```
Out[32]:
```py
['cats', 'dogs', 'pigs']
```
所有的值:
In [33]:
```py
d.values()
```
Out[33]:
```py
[4, 2, 7]
```
所有的键值对:
In [34]:
```py
d.items()
```
Out[34]:
```py
[('cats', 4), ('dogs', 2), ('pigs', 7)]
```
## 数组 Numpy Arrays
需要先导入需要的包Numpy数组可以进行很多列表不能进行的运算。
In [35]:
```py
from numpy import array
a = array([1, 2, 3, 4])
a
```
Out[35]:
```py
array([1, 2, 3, 4])
```
加法:
In [36]:
```py
a + 2
```
Out[36]:
```py
array([3, 4, 5, 6])
```
In [37]:
```py
a + a
```
Out[37]:
```py
array([2, 4, 6, 8])
```
## 画图 Plot
Python提供了一个很像MATLAB的绘图接口。
In [38]:
```py
%matplotlib inline
from matplotlib.pyplot import plot
plot(a, a**2)
```
Out[38]:
```py
[<matplotlib.lines.Line2D at 0x9fb6fd0>]
```
![]()
## 循环 Loop
In [39]:
```py
line = '1 2 3 4 5'
fields = line.split()
fields
```
Out[39]:
```py
['1', '2', '3', '4', '5']
```
In [40]:
```py
total = 0
for field in fields:
total += int(field)
total
```
Out[40]:
```py
15
```
Python中有一种叫做列表推导式(List comprehension)的用法:
In [41]:
```py
numbers = [int(field) for field in fields]
numbers
```
Out[41]:
```py
[1, 2, 3, 4, 5]
```
In [42]:
```py
sum(numbers)
```
Out[42]:
```py
15
```
写在一行:
In [43]:
```py
sum([int(field) for field in line.split()])
```
Out[43]:
```py
15
```
## 文件操作 File IO
In [44]:
```py
cd ~
```
```py
d:\Users\lijin
```
写文件:
In [45]:
```py
f = open('data.txt', 'w')
f.write('1 2 3 4\n')
f.write('2 3 4 5\n')
f.close()
```
读文件:
In [46]:
```py
f = open('data.txt')
data = []
for line in f:
data.append([int(field) for field in line.split()])
f.close()
data
```
Out[46]:
```py
[[1, 2, 3, 4], [2, 3, 4, 5]]
```
In [47]:
```py
for row in data:
print row
```
```py
[1, 2, 3, 4]
[2, 3, 4, 5]
```
删除文件:
In [48]:
```py
import os
os.remove('data.txt')
```
## 函数 Function
Python用关键词`def`来定义函数。
In [49]:
```py
def poly(x, a, b, c):
y = a * x ** 2 + b * x + c
return y
x = 1
poly(x, 1, 2, 3)
```
Out[49]:
```py
6
```
用Numpy数组做参数x
In [50]:
```py
x = array([1, 2, 3])
poly(x, 1, 2, 3)
```
Out[50]:
```py
array([ 6, 11, 18])
```
可以在定义时指定参数的默认值:
In [51]:
```py
from numpy import arange
def poly(x, a = 1, b = 2, c = 3):
y = a*x**2 + b*x + c
return y
x = arange(10)
x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```
Out[51]:
```py
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```
In [52]:
```py
poly(x)
```
Out[52]:
```py
array([ 3, 6, 11, 18, 27, 38, 51, 66, 83, 102])
```
In [53]:
```py
poly(x, b = 1)
```
Out[53]:
```py
array([ 3, 5, 9, 15, 23, 33, 45, 59, 75, 93])
```
## 模块 Module
Python中使用`import`关键词来导入模块。
In [54]:
```py
import os
```
当前进程号:
In [55]:
```py
os.getpid()
```
Out[55]:
```py
4400
```
系统分隔符:
In [56]:
```py
os.sep
```
Out[56]:
```py
'\\'
```
## - 类 Class
`class`来定义一个类。 `Person(object)`表示继承自`object`类; `__init__`函数用来初始化对象; `self`表示对象自身,类似于`C` `Java`里面`this`
In [57]:
```py
class Person(object):
def __init__(self, first, last, age):
self.first = first
self.last = last
self.age = age
def full_name(self):
return self.first + ' ' + self.last
```
构建新对象:
In [58]:
```py
person = Person('Mertle', 'Sedgewick', 52)
```
调用对象的属性:
In [59]:
```py
person.first
```
Out[59]:
```py
'Mertle'
```
调用对象的方法:
In [60]:
```py
person.full_name()
```
Out[60]:
```py
'Mertle Sedgewick'
```
修改对象的属性:
In [61]:
```py
person.last = 'Smith'
```
添加新属性d是之前定义的字典
In [62]:
```py
person.critters = d
person.critters
```
Out[62]:
```py
{'cats': 4, 'dogs': 2, 'pigs': 7}
```
## 网络数据 Data from Web
In [63]:
```py
url = 'http://ichart.finance.yahoo.com/table.csv?s=GE&d=10&e=5&f=2013&g=d&a=0&b=2&c=1962&ignore=.csv'
```
处理后就相当于一个可读文件:
In [64]:
```py
import urllib2
ge_csv = urllib2.urlopen(url)
data = []
for line in ge_csv:
data.append(line.split(','))
data[:4]
```
Out[64]:
```py
[['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close\n'],
['2013-11-05', '26.32', '26.52', '26.26', '26.42', '24897500', '24.872115\n'],
['2013-11-04',
'26.59',
'26.59',
'26.309999',
'26.43',
'28166100',
'24.88153\n'],
['2013-11-01',
'26.049999',
'26.639999',
'26.030001',
'26.540001',
'55634500',
'24.985086\n']]
```
使用`pandas`处理数据:
In [65]:
```py
ge_csv = urllib2.urlopen(url)
import pandas
ge = pandas.read_csv(ge_csv, index_col=0, parse_dates=True)
ge.plot(y='Adj Close')
```
Out[65]:
```py
<matplotlib.axes._subplots.AxesSubplot at 0xc2e3198>
```
![]()